
Sivakumar Balasubramanian Linear Algebra and Random Processes/Eigenvalues and Eigenvectors 1/28

Linear Algebra and Random Processes
Eigenvalues and Eigenvectors

Sivakumar Balasubramanian

Department of Bioengineering
Christian Medical College, Bagayam

Vellore 632002



Sivakumar Balasubramanian Linear Algebra and Random Processes/Eigenvalues and Eigenvectors 2/28

References

I G Strang, Linear Algebra: Chapters 5.



Sivakumar Balasubramanian Linear Algebra and Random Processes/Eigenvalues and Eigenvectors 3/28

Linear transformation

I Matrices represent linear transformations, A ∈ Rm×n represents a transformation
T : Rn → Rm.

y = T (x) = Ax, x ∈ Rn and y ∈ Rm

I Consider a linear transformation T : Rn → Rn.
In general, T scales and rotates the vector x to produce y.

e1

e2

x1 =

[
0.5
1

]

x2 =

[
1.0

−1.5

]

A =

[
2 1
1 2

]
e1

e2
Ax1 =

[
2

2.5

]

Ax2 =

[
0.5

−2.0

]
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Linear transformation

An easier way is to look at what happens to the standard basis {ei}ni=1.

e1

e2

A =

[
1.75 0

0 1.25

]

e1

e2

A =

[
2 1
1 2

]

e1

e2

A =

[
−0.5 1

1 −2

]

e1

e2

A = 1√
2

[
1 −1
1 1

]
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Linear transformation in different basis

I Consider a basis V = {vi}ni=1 for Rn. Let x =
[
x1 x2 . . . xn

]T ∈ Rn be the
representation of x in the standard basis.
Representation of x in V is,

xV =

n∑
i=1

xvivi, xV =
[
xv1 xv2 . . . xvn

]T
I We can go back and forth between these two representations in the following way,

x = VxV and xV = V−1x; where, V =
[
v1 v2 . . . vn

]
I When V is an orthonormal basis, then the algebra gets simpler,

x = VxV and xV = VTx
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Linear transformation in different basis

Consider a linear transformation T : R2 → R2 represented by the matrix A =

[
2 1
−1 1

]
.

Consider a vector x =

[
3
−1

]
. What is y = Ax?

y = Ax =

[
2 1
−1 1

] [
3
−1

]
=

[
5
−4

]
Now, consider a basis V =

{[
1
−1

]
,

[
2
4

]}
for R2. The representation of x,y in V is,

xV = V−1x =
1

6

[
4 −2
1 1

] [
3
−1

]
=

1

6

[
14
2

]
, yV =

1

6

[
28
1

]
Now, if we apply the linear transformation T on xV will we get yV ?

AxV =

[
2 1
−1 1

]
1

6

[
14
2

]
=

1

6

[
16
−12

]
6= yV

Representation of a linear transformation T is basis dependent!
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Similarity transformation

I Linear transformations represented in one basis represent a different
transformation in another basis. This issue can be addressed by keeping track of
the basis one is working in.

I Let x,y be representations in the standard basis. Changing basis to V , gives us
xV ,yV .

yV = V−1y = V−1Ax = V−1AVxV = AV xV

• Check if this works with the example in the previous slide. A =

[
2 1
−1 1

]
; V =

[
1 2
−1 4

]
.

Determine AV and check that yV = AV xV .

• A linear transformation T̂ is represented as AV in V . What is its representation in the

standard basis? E.g.: AV =

[
−4 2
3 −5

]
; V = 1√

2

[
1 1
−1 1

]
. Determine A. If xV =

[
1
2 2

]T
.

What is yV and y?
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Similarity transformation

I Two matrices A,B ∈ Rn×n are called similar matrices, if there exists a
non-singular matrix Q, such that,

B = Q−1AQ

I The transformation represented by Q−1AQ is called the similarity transformation.

I Similar matrices represent the same linear transformation in different basis.

I When Q is an orthogonal matrix, we have B = QTAQ.
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Complex Vectors and Matrices

I Similar to Rn, we can have Cn. x =


x1
x2
...
xn

 =


xr1 + jxi1
xr2 + jxi2

...
xrn + jxin


I Vector addition and scalar mulitplication are the same. The scalar is a complex

number.

I Additive identity, and scalar multiplication identity are the same. So is the
standard basis {ei}ni=1

I Linear independence: The set {vi}ni=1 with vi ∈ Cn is linearly independent, if∑n
i=1 civi = 0, =⇒ ci = 0, ∀1 ≤ i ≤ n, ci ∈ C

I Inner product: xHy =
[
x1 x2 . . . xn

]

y1
y2
...
yn

 =
∑n

i=1 xiyi
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Complex Vectors and Matrices

I Length: ‖x‖22 = xHx =
∑n

i=1 xixi =
∑n

i=1 |xi|
2

I Orthogonality: xHy = 0

I Complex matrices have complex entries. A ∈ Cm×n such that
aij ∈ C, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n

I The transpose operation is generalized to conjugate transpose known as the

Hermitian. AH = A
T

.

I The idea of symmetric matrices Rn×n are now generalized to Cn×n as A = AH .
Such matrices are called Hermitian matrices.

I Orthogonal matrices in the complex case are called Unitary matrices,
UHU = I =⇒ U−1 = UH .
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Eigenvectors and Eigenvalues

I Any linear transformation represented by A ∈ Cn×n has vectors that satisfy the
following property,

Ax = λx, x ∈ Cn, λ ∈ C, x 6= 0

where, λ and x are called the eigenvalue and the associated eigenvector of A.

I Any such pair (λ,x) is called the eigenpair of A.

I These are important for understanding and solving linear differential and
difference equations:

dx (t)

dt
= Ax (t) and x [n+ 1] = Ax [n]
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Eigenvectors and Eigenvalues

Consider the differential equation, dx(t)
dt = Ax (t) =

[
2 1
1 4

]
x (t). Let us assume that the

solution is of the form, x = eλtx̂. Then we have,

dx (t)

dt
= eλtAx̂ = eλtλx̂ =⇒ Ax̂ = λx̂[

2 1
1 4

] [
x̂1
x̂2

]
=

[
λx̂1
λx̂2

]
=⇒

[
2− λ 1
1 4− λ

] [
x̂1
x̂2

]
=

[
0
0

]
where, x̂ ∈ N (A− λI).

This problem can be solved by, det (A− λI) = |A− λI| = 0

(2− λ) (4− λ)− 1 = λ2 − 6λ+ 7 = 0 =⇒ λ = 3±
√
2

Ax̂ =
(
3 +
√
2
)

x̂ =⇒ x̂ =

[
−1 +

√
2

1

]
and Ax̂ =

(
3−
√
2
)

x̂ =⇒ x̂ =

[
−1−

√
2

1

]
(
3 +
√
2,

[
−1 +

√
2

1

])
and

(
3−
√
2,

[
−1−

√
2

1

])
are the eigenpairs of A.
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Eigenvalues and Eigenvectors

I We can find the eigenpairs using the same approach for A ∈ Cn×n,
det (A− λI) = 0 = p (λ).

I p (λ) is the characteristic polynomial of A, and p (λ) = 0 is the characteristic
equation.

I The eigenvalues are the roots of the polynomial p (λ), and the x in
(A− λI)x = 0 for the different λs are the corresponding eigenvectors.

I The subspace spanned by x for a particular λ is called the eigenspace.

I A has n eigenvalues, some of which can be complex, and some might be repeated.

I For a real matrix, all complex eigenvalues occur in conjugate pairs.

Compute the eigenpairs for the following matrices:

[
2 1
−1 3

]
,

[
1 0
0 1

]
,

[
2 1
1 2

]
,[ √

3
2

1
2

−1
2

√
3
2

]
,

[
0 −2
2 0

]
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Diagonalization of a matrix

Often the right choice of basis can simplify an equation or the analysis of a problem.
For example,

x1

x2

v1v2 P

x1
•

x2•

v1
•

v2

•

•
•

The equation of the ellipse in standard
basis is:

3x21 + 3x22 − 2x1x2 = 1

This has a much simpled representation in
the dashed coordinate frame.

4v21 + 2v22 = 1

The use of similarity transformation to
simplify a matrix is at the heart of
diagonalization.
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Diagonalization of a matrix

I Consider a matrix A with n eigenpairs {(λi,xi)}ni=1.

A
[
x1 x2 . . . xn

]
=
[
λ1x1 λ2x2 . . . λnxn

]

AX = X


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 = XΛ

I If the eignevectors are linearly independent, then we have X−1AX = Λ

Let T : R2 → R2 represented by A =

[
8 1
2 7

]
. Diagonalize this matrix. What does A

do to x =
[
3 4

]T
?

What about A =

[
3 −1
−1 3

]
?
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Diagonalization of a matrix: Eigenpairs of special matrices

I A square matrices with a complete set of eigenvectors, i.e. a linearly independent
set of n eigenvectors, can be decomposed into the following,

A = XΛX−1

I When A ∈ Rn×n is symmetric, i.e. A = AT ,
I All eigenvalues are real.
I The matrix poses a complete set of eigenvectors, i.e. they form a linearly

independent set.
I The eigenvectors can be chosen to be orthogonal to each other. When the

eigenvalues are distinct, the eigenvectors are orthogonal. But when the eigenvalues
are not distinct, we can choose them to be orthogonal.

This gives us, A = AT = XΛXT .

Diagonalize A =

0 1 0
1 0 0
0 0 1

.
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Diagonalization of a matrix

I A change of basis to X simplifies A to a diagonal matrix, the simplest possible
form.

I If a matrix A has n distinct eigenvalues, then A can always be diagonalized.

I When there are repeated eigenvalues, we might not always be able to diagonalize
a matrix. This happens when there aren’t enough eigenvectors. These are called
defective matrices.

Algebraic multiplicity 6= Geometric multiplicity

where, algebraic multiplicity is the number of times the eigenvalue λ is repeated,
and geometric multiplicity is dimN (A− λI).

Diagonalize A =

[
1 2
0 1

]
.



Sivakumar Balasubramanian Linear Algebra and Random Processes/Eigenvalues and Eigenvectors 24/28

Diagonalization of a matrix

I A change of basis to X simplifies A to a diagonal matrix, the simplest possible
form.

I If a matrix A has n distinct eigenvalues, then A can always be diagonalized.

I When there are repeated eigenvalues, we might not always be able to diagonalize
a matrix. This happens when there aren’t enough eigenvectors. These are called
defective matrices.

Algebraic multiplicity 6= Geometric multiplicity

where, algebraic multiplicity is the number of times the eigenvalue λ is repeated,
and geometric multiplicity is dimN (A− λI).

Diagonalize A =

[
1 2
0 1

]
.



Sivakumar Balasubramanian Linear Algebra and Random Processes/Eigenvalues and Eigenvectors 25/28

Jordan Form

I If A cannot be diagonalized, the next best thing is the Jordan form.
I Let A have eigenvalues (λ1, λ2, . . . λk). We can find a similarity transformation,

such that,

A = PJP−1, J =


J (λ1) 0 . . . 0

0 J (λ2) . . . 0
...

...
. . .

...
0 0 . . . J (λk)


Each J (•) is associated with an eigenvalue and an
eigenvector, and is called a Jordan block, and has
the form

J (λl) =


λl 1 0 . . . 0
0 λl 1 . . . 0
0 0 λl . . . 0
...

...
...

. . . 1
0 0 0 . . . λl



I J ∈ Cr×r. r = the algebraic multiplicity of
the eigenvalue λl.

I 1 = the geometric multiplicity of the
eigenvalue λl = dimN (A− λlI).

I A 1-by-1 Jordan block is simply [λl],
corresponding to a eigenvalue with an
associated eigenvector.
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Jordan Form

• Jordan form of a diagonalizable matrix A→ J =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . . 0

0 0 . . . λn



• λ = −2 (AM1 = 1, GM2 = 1), and λ = 11 (AM = 2, GM = 1) → J =

−2 0 0
0 11 1
0 0 11


• Write down the Jordan form.
λ1 = 1 (AM = 2, GM = 1)
λ2 = 11 (AM = 3, GM = 2)
λ3 = 0 (AM = 3, GM = 1)

λ4 = −1 (AM = 2, GM = 2).

1AM: Algebraic multiplicity
2GM: Geometric multiplicity
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