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Overdetermined System of linear equations

I For a tall, skinny matrix A ∈ Rm×n, there is a solution to Ax = b, only when
b ∈ C (A).

b =

n∑
i=1

viai = Va; a ∈ Rn, V =
[
v1 v2 . . . vn

]
∈ Rn×n

I Can we have an approximate solution when @x such that Ax = b?
Let us define “approximate” solution x̂ as the one that minimizes
‖b−Ax̂‖22 , ∀x ∈ Rn . This is the least squares problem.

Given A and b, choose x̂ such that

minimize ‖b−Ax‖22
I A and b come from the data.

I ‖b−Ax‖2 is called the objective function.



Sivakumar Balasubramanian Linear Systems/Least Squares Methods 4/13

Least Squares Problem

2x = 1

−1x = −2
√
2x = 0

 −→ Ax = b, A =

 2
−1√
2

 , x ∈ R, b ∈

 1
−2
0


‖b−Ax‖2 = (1− 2x)2 + (−2 + x)2 +

(√
2x
)2

= 7x2 − 8x+ 5 ≥ 0
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Least Squares Problem

2x1 − x2 = 2

−x1 + x2 = 1

3x1 + 2x2 = −1

 −→ Ax = b, A =

 2 −1
−1 1
3 2

 , x =

[
x1

x2

]
, b ∈

 2
1
−1


‖b−Ax‖2 = 14x2

1 + 6x2
2 + 6x2 + 6x1x2 + 6 ≥ 0
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Least Squares Methods

I The general solution to this least squares problem can be derived using calculus.
Let f (x) = ‖b−Ax‖

∇f (x) = 0 −→


∂f
∂x1

...
∂f
∂xn

 = 0

Going through the algebra, we end up with the following expression for x̂ that
minimizes f (x),

ATAx̂ = ATb︸ ︷︷ ︸
Normal Equations

A is full rank, =⇒ ATA is invertible.

=⇒ x̂ =
(
ATA

)−1
AT︸ ︷︷ ︸

Pseudo-inverse

b = A†b
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Least Squares Methods

I x̂ is the approximate least squares solution. b̂ = Ax̂, which is in general not equal to b. When is
b = b̂?

I We know two things about b̂,

1. b̂ ∈ C (A): b̂ is the column space of A.

2.
∥∥∥b− b̂

∥∥∥ is minimum.

a1

a2

b

b̂ = Ax̂

b−Ax̂
0C (A)

‖b−Ax̂‖22 is minimum =⇒ (b−Ax̂) ⊥ Ax̂

(Ax̂)T (b−Ax̂) = 0 =⇒ x̂T
(
ATb−ATAx̂

)
︸ ︷︷ ︸

Normal Equations

= 0

The least squares approximate solution of Ax = b is the

solution solution to the equation Ax = b̂, where b̂ is the

projection of b onto the column space of A (C (A)).
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Multi-Objective Least Squares

I There are applications where there is more than one objective that must be optimized,

J1 = ‖A1x− b1‖2 , J2 = ‖A2x− b2‖2 , . . . Jk = ‖Akx− bk‖2 ,

and often these are conflicting objectives.

I We can define a single objective function J that is takes into account the different
objective functions.

J =

k∑
i=1

ρiJi, ρi > 0, ∀1 ≤ i ≤ k

I The ρis indicate the relative weightage given to the individual objectives.

J = J1 +

k∑
i=2

ρiJi
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Multi-Objective Least Squares

J = ρ1 ‖A1x− b1‖2 + . . .+ ρk ‖Akx− bk‖2

= ‖√ρ1A1x−
√
ρ1b1‖2 + . . .+ ‖√ρkAkx−

√
ρkbk‖2

J =

∥∥∥∥∥∥∥∥∥


√
ρ1A1√
ρ2A2

...√
ρkAk

x−


√
ρ1b1√
ρ2b1

...√
ρkbk


∥∥∥∥∥∥∥∥∥
2

=
∥∥∥Ãx− b̃

∥∥∥2 =⇒ x̂ =
(
ÃT Ã

)−1

ÃT b̃

The columns of Ã are must be independent, which happens if the columns of at least one of
the Ais is independent.
Consider a two objective case, J = J1 + ρJ2.

x̂ =

{
argminx ‖A1x− b1‖2 ρ = 0

argminx ‖A2x− b2‖2 ρ→∞
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Multi-Objective Least Squares
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Multi-Objective Least Squares

I Multi-objective least squares methods play an important role in both control and
estimation problems.

I Appropriate choice of the objective functions can also help deal with conditions where the
columns of Ai are not independent. Consider the following example,

J1 = ‖A1x− b1‖2 and J2 = ‖A2x− b2‖2

where, A1 ∈ Rm1×n and A2 ∈ Rm2×n, such that m1,m2 < n. Thus, the columns of A1

and A2 are not independent! However, if m1 +m2 ≥ n, then it is possible that the
columns of Ã are independent.

I This is called regularized least squares.

I Tichonov regularization: J = ‖Ax− y‖2 + ρ ‖x‖2, where ρ > 0.

Ã =

[
A√
ρI

]
=⇒ x̂ =

(
ATA+ ρI

)−1
ATb
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Multi-Objective Least Squares

I Tichonov regularization: J = ‖Ax− y‖2 + ρ ‖x‖2, where ρ > 0.

Ã =

[
A√
ρI

]
=⇒ x̂ =

(
ATA+ ρI

)−1
ATb

I x̂ gives a unique solution in minimizing J , even when A is not full rank.

I Even when A is full rank, the regularization term can be used to improve the condition
number of the matrix.
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Constrained Least Squares

I Problem:
minimize ‖Ax− b‖2

subject to Cx = d

where, A ∈ Rm×n, x ∈ Rn, b ∈ Rm, C ∈ Rp×n and d ∈ Rp.

I This can be solved using the method of Lagrange multipliers. When we do this, we finally
arrive the following set of equations, called the Karush-Kuhn-Tucker (KKT) equation,

2
(
ATA

)
x̂− 2ATb+CT ẑ = 0[

2
(
ATA

)
CT

C 0

] [
x̂
ẑ

]
=

[
2ATb
d

]
I The coefficient matrix on the LHS of the KKT equation a square matrix of dimensions

(n+ p)× (n+ p) is invertible, if and only if,

[
A
C

]
is full rank.


