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Matrices

I Matrices are rectangular array of numbers.

[
1.1 −24

√
2

0 1.12 −5.24

]

n rows

m columns
� � � . . . �
� � � . . . �
� a32 � . . . �
...

...
...

. . .
...

� � � . . . �


2nd column

3rd row

I Consider a matrix A with n rows and m columns.


Tall/Skinny n > m

Square n = m

Wide/Fat n < m
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Matrices

I n-vectors can be interpreted as n× 1 matrices. These are called column vectors.

I A matrix with only one row is called a row vector, which can be referred to as
n-row-vector. x =

[
1.45 −3.1 12.4

]
I Block matrices & Submatrices: A =

[
B C
D E

]
. What are the dimensions of the

different matrices?

I Matrices are also compact way to give a set of indexed column n-vectors,
x1,x2,x3 . . .xm.

X =
[
x1 x2 x3 . . . xm

]

I Zero matrix= 0n×m =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
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Matrices

I Identity matrix is a square n× n matrix with all zero elements, except the diagonals
where all elements are 1.

Iij =

{
1 i = j

0 i 6= j
I3 =

1 0 0
0 1 0
0 0 1

 =
[
e1 e2 e3

]
I Diagonal matrices is a square matrix with non-zero elements on its diagonal.

0.4 0 0 0
0 −11 0 0
0 0 21 0
0 0 0 9.3

 = diag (0.4,−11, 21, 9.3)

I Triangular matrices: Are square matrices. Upper triangular aij = 0, ∀i > j; Lower
triangular aij = 0,∀i < j.
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Matrix operations

I Transpose switches the rows and columns of a matrix. A is a n×m matrix, then its
transpose is represented by AT , which is a m× n matrix.

A =

[
a11 a12 a13
a21 a22 a23

]
=⇒ AT =

a11 a21
a12 a22
a13 a23


Transpose converts between column and row vectors.

What is the transpose of a block matrix? A =

[
B C
D E

]
I Matrix addition can only be carried out with matrices of same size. Like vectors we

perform element wise addition.[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
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Matrix operations

I Properties of matrix addition:
I Commutative: A+B = B+A
I Associative: (A+B) +C = A+ (B+C)
I Addition with zero matrix : A+ 0 = 0+A = A
I Transpose of sum: (A+B)

T
= AT +BT

I Scalar multiplication Each element of the matrix gets multiplied by the scalar.

α

[
a11 a12
a21 a22

]
=

[
αa11 αa12
αa21 αa22

]
I We will mostly only deal with matrices with real entries. Such matrices are elements of

the set Rn×m.

I Given the aforementioned matrix operations and their properties, is Rn×m a vector
space?
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Matrix multiplication

I It is possible to multiply two matrices A ∈ Rn×p and B ∈ Rp×m through matrix
multiplication procedure.

I There is a product matrix C := AB ∈ Rn×m, if the number of columns of A is equal to
the number of rows of B.

cij :=

p∑
k=1

aikbkj ∀i ∈ {1, . . . n} & j ∈ {1 . . .m}

I Inner product is a special case of matrix multiplication between a row vector and a
column vector.

xTy =


x1
x2
...
xn


T 

y1
y2
...
yn

 =
[
x1 x2 . . . xn

]

y1
y2
...
yn

 =
n∑
i=1

xiyi
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Matrix multiplication

I Consider a matrix A ∈ Rn×m and a m-vector x ∈ Rm. We can multiply A and x to
obtain y = Ax ∈ Rn.

y =


a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm



x1
x2
...
xm

 =


ãT1
ãT2
...
ãTn

x =


ãT1 x
ãT2 x

...
ãTnx

 =


∑m

i=1 a1ixi∑m
i=1 a2ixi

...∑m
i=1 anixi



y =
m∑
i=1

xi


a1i
a2i
...
ani

 = x1


a11
a21

...
an1

+ x2


a12
a22

...
an2

+ . . .+ xm


a1m
a2m

...
anm


I Multiplying a matrix A by a column vector x produces a linear combination of the

columns of matrix A. The column mixture is provided by x.
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Matrix multiplication

I We see a similar process in play when we multiply a row vector xT ∈ Rn by a matrix
A ∈ Rn×m.

y = xTA =


x1
x2
...
xn


T 

a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm

 = xT
[
a1 a2 . . . am

]

y =
[
xTa1 xTa2 . . . xTam

]
=

n∑
i=1

xi
[
ai1 ai2 . . . aim

]
I Multiplying a row vector x by a matrix A produces a linear combination of the row of

matrix A. The row mixture is provided by x.
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Matrix multiplication

I Multiplying two matrices A ∈ Rn×p and B ∈ Rp×m, we have C ∈ Rn×m,

C = AB =


a11 a12 . . . a1p
a21 a22 . . . a2p

...
...

. . .
...

an1 an2 . . . anp



b11 b12 . . . b1m
b21 b22 . . . b2m

...
...

. . .
...

bp1 bp2 . . . bpm

 =


c11 c12 . . . c1m
c21 c22 . . . c2m

...
...

. . .
...

cp1 cn2 . . . cnm


I Inner product interpretation: cij = ãTi bj , i ∈ {1 . . . n} , j ∈ {1 . . .m}
I Column interpretation: C = A

[
b1 b2 . . . bm

]
=
[
Ab1 Ab2 . . . Abm

]
I Row interpretation : C =


ãT1
ãT2
...
ãTn

B =


ãT1 B
ãT2 B

...
ãTnB
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Matrix multiplication

I Outer product interpretation Consider two n-vectors x,y ∈ Rn. The outer product is defined
as,

xyT =


x1
x2
x3
...
xn


[
y1 y2 y3 . . . yn

]
=


x1y1 x1y2 x1y3 . . . x1yn
x2y1 x2y2 x2y3 . . . x2yn
x3y1 x3y2 x3y3 . . . x3yn

...
...

...
. . .

...
xny1 xny2 xny3 . . . xnyn


I We can represent the product between two matrices as the sum of outer products between the

columns and A and rows of B.

AB =
[
a1 a2 a3 . . . ap

]

b̃T
1

b̃T
2

b̃T
3
...

b̃T
p

 =

p∑
i=1

aib̃
T
i
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Properties of matrix multiplication

I Not commutative: AB 6= BA
The product of two matrices might not alwasys be defined. When it is defined, AB and
BA need not match.

I Distributive: A (B+C) = AB+BC and (A+B)C = AC+BC

I Associative: A (BC) = (AB)C

I Transpose: (AB)T = BTAT

I Scalar product: α (AB) = (αA)B = A (αB)



Sivakumar Balasubramanian Linear Systems/Matrices 14/37

Linear equations

I Matrices present a compact way to represent a set of linear equations. Consider the
following,

a11x1 + a12x2 . . .+ a1nxn = b1

a21x1 + a22x2 . . .+ a2nxn = b2

a31x1 + a32x2 . . .+ a3nxn = b3
...

am1x1 + am2x2 . . .+ amnxn = bm


−→ Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
. . .

...
am1 am2 am3 . . . amn

 x =


x1
x2
...
xn

 b =


b1
b2
...
bm
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Geometry of linear equations

x1 + 2x2 = −1
x1 + x2 = 1

}
−→

[
1 2
1 1

] [
x1
x2

]
=

[
−1
1

]
Two ways to view this: row view and the column view.

Traditional (row) view

x1

x2

x1 + 2x2 = −1

x1 + x2 = 1

•(3,−2)

Column view

x1

x2
3a1

a1 a2

−2a2

b
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Solving linear equations

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm

I Three possible situations: No solution, Infinitely many solutions, or
Unique Solution.

I When do have infinitely many or no solutions? In R3, we can visualize the different
situations.

Two parallel planes Three parallel planes No intersection Line intersection
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Solving linear equations: Gaussian Elimination

a11x1 + a12x2 . . .+ a1nxn = b1 : E1

a21x1 + a22x2 . . .+ a2nxn = b2 : E2

a31x1 + a32x2 . . .+ a3nxn = b3 : E3

...

am1x1 + am2x2 . . .+ amnxn = bm : Em

I Gaussian elimination is a systematic way of simplifying the above equations to an
equivalent system that can be easily solved.

I Three simple operations are repeatedly performed:
I Interchanging of equations Ei and Ej .
I Replacing equation Ei by αEi, α 6= 0.
I Replacing equation Ej by Ej + αEi, α 6= 0.

I These three operations do not change the solution of the given linear system.
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Solving linear equations: Gaussian Elimination

Augmented matrix:


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
a31 a32 · · · a3n b3

...
...

. . .
...

...
am1 am2 · · · amn bm


I We can work with the augmented matrix instead of the equations.

I Gaussian elimination is carried out on the entire matrix.
I The matrix is simplified to a point, from where one can easily:

I find out the nature of the solutions for the system of equations; and
I find the solution (with a bit of extra work), if they exist.
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Solving linear equations: Gaussian Elimination

x1 + 2x2 − x3 = 1
2x1 + 3x2 + 4x3 = 4
−2x1 − 4x2 + x3 = −3

 −→
 1 2 −1 1

2 3 4 4
−2 −4 1 −3


Gaussian Elimination 1 2 −1 1

2 3 4 4
−2 −4 1 −3

 −→
 1 2 −1 1

0 −1 6 2
−2 −4 1 −3

 −→
 1 2 −1 1

0 −1 6 2
0 0 −1 −1


Now, we can perform back substitution on this triangularized system of linear equations,

x3 = 1; x2 = 4; x1 = −6

We can continue the simplification process through the Gauss-Jordan method.
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Solving linear equations: Gauss-Jordan Method

Continue the elimination upwards until all elements, except the ones in the main diagonal,
are zero. 1 2 −1 1

0 −1 6 2
0 0 −1 −1

 −→
 1 2 −1 1

0 −1 0 −4
0 0 1 1

 −→
 1 2 −1 1

0 1 0 4
0 0 1 1

 −→
 1 2 0 2

0 1 0 4
0 0 1 1


 1 2 0 2

0 1 0 4
0 0 1 1

 −→
 1 0 0 −6

0 1 0 4
0 0 1 1

 =⇒ x1 = −6; x2 = 4; x3 = 1;

Everything worked out well without any problems. What can go wrong here?

Try solving the these systems,

 1 2 −1 1
2 3 4 4
−2 −4 2 −3

,

 1 2 −1 1
2 3 4 4
−2 −4 2 −2


What is the difference between these two systems?
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Solving linear equations: Rectangular systems and Row Echelon Form

a11x1 + a12x2 . . .+ a1nxn = b1 : E1

a21x1 + a22x2 . . .+ a2nxn = b2 : E2

a31x1 + a32x2 . . .+ a3nxn = b3 : E3

...

am1x1 + am2x2 . . .+ amnxn = bm : Em

−→


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
a31 a32 · · · a3n b3

...
...

. . .
...

...
am1 am2 · · · amn bm


Consider the following example, 1 −2 1 0 1 1

2 −4 1 −1 −2 2
−1 2 1 1 2 −1

 −→
 1 −2 1 0 1 1

0 0 −1 −1 −4 0
0 0 2 1 3 0

 −→
 1 −2 1 0 1 1

0 0 −1 −1 −4 0
0 0 0 −1 −5 0
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Solving linear equations: Rectangular systems and Row Echelon Form
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
a31 a32 · · · a3n b3

...
...

. . .
...

...
am1 am2 · · · amn bm

 −→

∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 ∗
0 0 0 0 0 0 0


Things to notice about the echelon form:

I If a particular row consists entirely of zeros, then all rows below that row also contain entirely of
zeros.

I If the first non-zero entry in the ith row occurs in the jth position, then all elements below the
ith row are zero from columns 1 to j.

Columns containing pivot are called the basic columns.

Rank of a matrix A is defined at the number of basic columns in the row echelon
form of the matrix A.



Sivakumar Balasubramanian Linear Systems/Matrices 23/37

Solving linear equations: Reduced Row Echelon Form
∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 ∗
0 0 0 0 0 0 0


Gauss-Jordan−−−−−−−→


1 ∗ 0 0 0 ∗ 0
0 0 1 0 0 ∗ 0
0 0 0 1 0 ∗ 0
0 0 0 0 1 ∗ 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


 1 −2 1 0 1 1

0 0 −1 −1 −4 0
0 0 0 −1 −5 0

 −→
 1 −2 0 −1 −3 1

0 0 1 1 4 0
0 0 0 −1 −5 0

 −→
 1 −2 0 0 2 1

0 0 1 0 −1 0
0 0 0 1 5 0


I All non-basic columns can be represented as a linear combination of the basic columns.

I A non-basic column is a linear combination of only the columns before it.

I Scaling factors for each basic columns is determined by the corresponding elements of the
non-basic columns.

The reduced row echelon form reveals structure in the original matrix A.
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Solving linear equations: Homogenous Systems
a11x1 + a12x2 . . .+ a1nxn = 0

a21x1 + a22x2 . . .+ a2nxn = 0

a31x1 + a32x2 . . .+ a3nxn = 0

...

am1x1 + am2x2 . . .+ amnxn = 0

−→


a11 a12 · · · a1n 0
a21 a22 · · · a2n 0
a31 a32 · · · a3n 0
...

...
. . .

...
...

am1 am2 · · · amn 0


Consider the following case, 1 −2 1 0 1 0

2 −4 1 −1 −2 0
−1 2 1 1 2 0

 −→
 1 −2 0 0 2 0

0 0 1 0 −1 0
0 0 0 1 5 0


x1 − 2x2 + 2x5 = 0

x3 − x5 = 0

x4 + 5x5 = 0

−→
x1 = 2x2 − 2x5

x3 = x5

x4 = −5x5
−→


x1
x2
x3
x4
x5

 =


2x2 − 2x5

x2
x5
5x5
x5

 = x2


2
1
0
0
0

+ x5


−2
0
1
−5
1
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Solving linear equations: Homogenous Systems

I


x1
x2
x3
x4
x5

 = x2


2
1
0
0
0

+ x5


−2
0
1
−5
1

 represents the general solution of the system of equations.

I In general, any system [A | 0] with rank (A) = r and r < n has the general solution of the form,

x = xf1h1 + xf2h2 + . . .+ xfn−r
hn−r

where, the variables xf1 , xf2 , . . . , xfn−r are called the free variables.

I Free variables are the one corresponding to the non-basic columns; the variable variables
corresponding to the basic columns are the basic variables.

I When does a homogenous system have a unique solution solution? −→ rank (A) = n.



Sivakumar Balasubramanian Linear Systems/Matrices 26/37

Solving linear equations: Non-homogenous Systems
a11x1 + a12x2 . . .+ a1nxn = b1

a21x1 + a22x2 . . .+ a2nxn = b2

a31x1 + a32x2 . . .+ a3nxn = b3

...

am1x1 + am2x2 . . .+ amnxn = bm

−→ [A | b]

Consider the following case, 1 −2 1 0 1 1
2 −4 1 −1 −2 2
−1 2 1 1 2 −1

 −→
 1 −2 0 0 2 1

0 0 1 0 −1 0
0 0 0 1 5 0


x1 − 2x2 + 2x5 = 1

x3 − x5 = 0

x4 + 5x5 = 0

−→
x1 = 1 + 2x2 − 2x5

x3 = x5

x4 = −5x5
−→


x1
x2
x3
x4
x5

 =


1 + 2x2 − 2x5

x2
x5
5x5
x5

 =


1
0
0
0
0

+ x2


2
1
0
0
0

+ x5


−2
0
1
−5
1


The general solution of a non-homogenous system is sum of the particular solution and the
general solution of the associated homogenous system.
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Solving linear equations: Non-homogenous Systems
I The general solution for [A | 0] with rank (A) = r,

x = p+ xf1h1 + xf2h2 + . . .+ xfn−r
hn−r

where, p is the particular solution and xf1 , xf2 , . . . , xfn−r
are the free variables.

I When do we have a unique solution to this system? −→ rank (A) = n.

I What about the case when there are no solutions? When does that happen? −→ When the system is not
consistent. 

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
a31 a32 · · · a3n b3
...

...
. . .

...
...

am1 am2 · · · amn bm

 −→


1 ∗ 0 0 0 ∗ c1
0 0 1 0 0 ∗ c2
0 0 0 1 0 ∗ c3
0 0 0 0 1 ∗ c4
...

...
...

...
...

...
...

0 0 0 0 0 0 cm


There is a problem when cm 6= 0

I The augmented matrix [A | b] has the same number of basic columns as A.

I [A | b]→ [E | c]: c is a non-basic column.

I rank (A) = rank ([A | b])
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LU Factorization of a Matrix

I A major theme of matrix algebra is to decompose matrices into simpler components that
provide insights into the nature of the matrix.

I A full rank square matrix A ∈ Rn×n can be decomposed into the product of a lower
triangular and an upper triangular matrix.

I Matrices associated with the three elementary operations:

Inter-changing
rows 2 and 4

Scaling
row 2

Adding a multiple of
row 2 to row 3

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



1 0 0 0
0 α 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 1 0 0
0 α 1 0
0 0 0 1
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LU Factorization of a Matrix

I Consider the case: A =

1 −1 2
2 0 2
4 2 1

 =

1 0 0
2 1 0
4 3 1

1 −1 2
0 2 −2
0 0 −1

 = LU

I LU factorization can be done only when no zero pivot is encountered during the Guassian
elimination process.

I Ax = b becomes LUx = b: This is decomposed into two triangular systems,
Ux = y, Ly = b. First solve Ly = b and then solve Ux = y

I Properties:

I Diagonal elements of L are 1, and U are not equal to zero.
I U is the final result of Gaussian elimination, and L is the matrix that reverses this process.
I Element lij of L is the multiple of row j used to eliminate the aij element of A.

I Uses of the LU factorization:

I Solving Ax = bi for several bis. LU need to be calculated only once.
I Factorization requires no extra space.
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PA = LU Factorization of a Matrix

I Consider the case: A =

1 1 0
2 2 1
3 4 1

 =

1 0 0
2 0 1
0 1 0

1 1 0
0 1 0
0 0 1

 6= LU

I It turns out the second pivot become zero after the first elimination step, so LU
factorization cannot be done on A.

I The following however fixes this issue,

PA = LU

where, P is the permutation matrix, which is the elementary matrix for row exchanges.

I In the current example, the following allows matrix factorization.

PA =

1 0 0
0 0 1
0 1 0

1 1 0
2 2 1
3 4 1

 =

1 0 0
0 1 0
2 0 1

1 1 0
0 1 0
0 0 1

 = LU
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Linear transformations

I We had earlier seen linear functions of the form f : Rn 7→ R, which could be expressed
as,

y = f (x) = wTx; w,x ∈ Rn, y ∈ R

I A general version is when the range of the function is not in R but in Rm:

y = f (x) ; x ∈ Rn, y ∈ Rm

I Such a function has a natural representation of the form y = Ax, A ∈ Rm×n.

I Any linear transformation can be expressed as y = Ax.

I Matrices can be thought of as representing a particular linear transformation.
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Another look at matrix multiplication

Why does matrix multiplication have this strange definition?

Consider the following two functions,

y = f (x) = Ax −→
[
y1
y2

]
= f

([
x1
x2

])
=

[
ax1 + bx2
cx1 + dx2

]
=

[
a b
c d

] [
x1
x2

]

v = g (u) = Bu −→
[
v1
v2

]
= g

([
u1
u2

])
=

[
αu1 + βu2
γu1 + δu2

]
=

[
α β
γ δ

] [
u1
u2

]

z = h (u) = f (g (u)) = f

([
αu1 + βu2
γu1 + δu2

])
=

[
aαu1 + aβu2 + bγu1 + bδu2
cαu1 + cβu2 + dγu1 + dδu2

]
=

[
(aα+ bγ)u1 + (aβ + bδ)u2
(cα+ dγ)u1 + (cβ + dδ)u2

]
=

[
aα+ bγ aβ + bδ
cα+ dγ cβ + dδ

] [
u1
u2

]

z = A (Bu) = (AB)u =⇒ AB =

[
a b
c d

] [
α β
γ δ

]
=

[
aα+ bγ aβ + bδ
cα+ dγ cβ + dδ

]
This definition of matrix multiplication is the most natural for dealing with composition of

linear transformations.
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Four Fundamental Subspaces

I C (A): Column Space of A – the span of the columns of A.

C (A) = {Ax | x ∈ Rn} ⊆ Rm

I N (A): Nullspace of A – the set of all x ∈ Rn that are mapped to zero by A.

N (A) = {x | Ax = 0} ⊆ Rn

I C
(
AT
)
: Row Space of A – the span of the rows of A.

C
(
AT
)
=
{
ATy | y ∈ Rm

}
⊆ Rn

I N
(
AT
)
: Nullspace of AT – the set of all y ∈ Rm that are mapped to zero by AT .

N
(
AT
)
=
{
y | ATy = 0

}
⊆ Rm

This is also called the left nullspace of A.
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Linear Independence

I Given a set of vectors {v1,v2, . . .vn} , vi ∈ Rm, how can we determine if this set is
linear independent?

I We need to verify, a1v1 + a2v2 + · · ·+ anvn = 0

[
v1 v2 · · · vn

]

a1
a2
...
an

 =


0
0
...
0

 = Va = 0

N (V) = {0} , rank (V) = n

I This is also equivalent to saying that when the rank (A) = n =⇒ the columns of A
form an independent set of vectors.

I When do the rows of A form an independent set?

I What about both rows and columns? When does that happen?
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Examples

I


2 −1 0 1
4 3 1 −1
6 −2 5 1
2 3 0 −1


︸ ︷︷ ︸

A


x1
x2
x3
x4


︸ ︷︷ ︸

x

=


1
−2
0
6


︸ ︷︷ ︸

b

I Now solve the above for a different
b =

[
1 1 1 1

]T
.

I


2 −1 0
4 3 1
6 −2 5
2 3 0


x1x2
x3

 =


−2
13
−17
14


I Now solve the above for a different

b =
[
1 1 1 1

]T
.

I
[
2 −1 −2
4 3 1

]x1x2
x3

 =

[
1
−2

]
I Now solve the above for a different

b =
[
1 1

]T
.

I Reduce this to the row echelon form:

A =

 1 −2 1
2 −4 1
−1 2 2
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Dimension and basis of the four fundamental subspaces

A =

 1 −2 1
2 −4 1
−1 2 2

 ; EA = R

 1 0 0
−2 1 0
−5 3 1


︸ ︷︷ ︸

E

A =

1 −2 1
0 0 −1
0 0 0


︸ ︷︷ ︸

R

Pivot cols of A:


 1

2
−1

 ,

11
2

 N (A): x2

21
0



We can restructure EA = R→
[
E1

E2

]
A =

[
R1

0

]

I Column space C(A)

I dim C(A) = rank (A) = r
I Basis of C(A) = Pivot colums of A.

I Nullspace N(A)

I dim N(A) = n− r
I Basis of N(A) = {h1,h2 . . .hn−r}.

I Row space C(AT )

I dim C(AT ) = rank
(
AT
)
=

rank (A) = r
I Basis of C(AT ) = Columns of RT

1 .

I Left Nullspace N(AT )

I dim N(AT ) = m− r
I Basis of N(AT ) = Colums of ET

2
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Matrix Inverse

I Consider the square matrix A ∈ Rn×n. B ∈ Rn×n is the inverse of A, if AB = BA = In, and
B is represented as A−1.

I Not all matrices have inverses. A matrix with an inverse is called non-singular, otherwise it is
called singular.

I For a non-singular matrix A, A−1 is unique. A−1 is both the left and right inverse.

I A matrix A has an inverse, if and only if A is full rank, i.e. rank (A) = n

I The inverse of a non-signular matrix can be determined through Gauss-Jordan method.

[A|I] Gauss-Jordan−−−−−−−→
[
I|A−1

]
. Lets try:

1 −2 2
2 1 0
1 1 −1


I Ax = b can be solved as follows, x = A−1b. It is never solved like this in practice.

I Inverse of product of matrices, (AB)
−1

= B−1A−1.

I
(
A−1

)−1
= A and

(
A−1

)T
=
(
AT
)−1


