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Matrices

> .
Matrices are rectangular array of numbers. [ 0 112 —5.94

1.1 —24 \/i]

m columns
F O] O D]
;0 |0 O my
n rows UD asza| L] D‘|—> 37 row
| : : S
LD S A
\\‘* 27d column

Tall/Skinny
» Consider a matrix A with n rows and m columns.{ Square
Wide/Fat

n>m
n=m

n<<m
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Matrices
P n-vectors can be interpreted as n x 1 matrices. These are called column vectors.
» A matrix with only one row is called a row vector, which can be referred to as
n-row-vector. x = [1.45 —3.1 12.4]
. . B C : .
» Block matrices & Submatrices: A = D E| What are the dimensions of the
different matrices?
» Matrices are also compact way to give a set of indexed column n-vectors,
X1,X92,X3...Xm-
X = [xl X9 X3 ... Xm]
00 ... 0
. 00 0
» Zero matrix= 0,,x,, =
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Matrices

> Identity matrix is a square n X n matrix with all zero elements, except the diagonals
where all elements are 1.

1 i=j 1 00
Lj = o I3=10 1 0 :[el e eg]
0 7] 00 1
» Diagonal matrices is a square matrix with non-zero elements on its diagonal.

04 0 0 O

0 .
0 0 91 o |=diag(04,-11,21,9.3)
0 0 0 93

» Triangular matrices: Are square matrices. Upper triangular a;; = 0,Vi > j; Lower
triangular a;; = 0,Vi < j.
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Matrix operations

» Transpose switches the rows and columns of a matrix. A is a n X m matrix, then its

transpose is represented by A, which is a m x n matrix.

aii

a11 a2 a13

A = e AT = a2
a1 a2 G23

a13

Transpose converts between column and row vectors.
B C]

| Ix? =
What is the transpose of a block matrix? A [D E

> Matrix addition can only be carried out with matrices of same size. Like vectors we

perform element wise addition.

[an a12] n [511 512] _ [an + b1 a2 + b2
a1 + b1 ago + b2

a1 G2 ba1  ba2

a21
a22
a3
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Matrix operations

> Properties of matrix addition:
» Commutative: A+B =B+ A
> Associative: (A+B)+C=A+(B+C)
» Addition with zero matrix: A+0=0+A=A
» Transpose of sum: (A +B)" = AT 4+ BT

» Scalar multiplication Each element of the matrix gets multiplied by the scalar.

o ailp aiz| _ |@a1l @ap2
a1 a2 Qa1 a2

» We will mostly only deal with matrices with real entries. Such matrices are elements of

the set R™**™,

» Given the aforementioned matrix operations and their properties, is R"*™ a vector
space?
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Matrix multiplication

» |t is possible to multiply two matrices A € R"*P and B € RP*"™ through matrix
multiplication procedure.
» There is a product matrix C :== AB € R™ ™, if the number of columns of A is equal to
the number of rows of B.
P
cij = Zaikbkj Vie{l,...n} & je{l...m}
k=1
» Inner product is a special case of matrix multiplication between a row vector and a
column vector.
T Y Y1
T2 Y2 Y2 -
XTy = : : = [acl o ... xn] : = Zziyi
. . . Py

In Yn Yn
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Matrix multiplication

» Consider a matrix A € R™™ and a m-vector x € R™. We can multiply A and x to
obtain y = Ax € R".

~T ~T m
aij; a2 ... Qaim I aj azxr Zz’:l a1;x;
~T ~T m
a1 Qa9 ... Qa9m xI9 as as T Zi:l a2;x;
y= . . . . . = . T = . = .
~T ~T m
Gnl Qp2 .. Gpm| |ZTm a, a,r Yo nimi
ai; aii ai2 a1m
m
a2; a21 a2 a2m
YZE x| | =2 | | Fz2| |+ Ty .
=1
Qnj anl an2 Gpm

» Multiplying a matrix A by a column vector x produces a linear combination of the
columns of matrix A. The column mixture is provided by x.
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Matrix multiplication

» We see a similar process in play when we multiply a row vector x” € R"™ by a matrix

A e Rm,
T
Tl ai; ai2 ... Qim
y=xTa= || |@ 0o =x'[a; ay ... ay]
T, anl An2 ... Qpm
y= [xTal xTay ... xT am Z:L‘Z a1 G ... aim]

» Multiplying a row vector x by a matrix A produces a linear combination of the row of
matrix A. The row mixture is provided by x.
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Matrix multiplication

» Multiplying two matrices A € R"*P and B € RP*™, we have C € R"*"™,

ail a2

a1 a2
C=AB=

Gn1 Aan2

Linear Systems/Matrices

bi1 b2
ba1 b2
bpr  bp2

bim c11
bam €21
bpm Cpl

C12
C22

Cn2

> Inner product interpretation: ¢;; =alb;, i€ {l1...n},j€{1...m}
> Column interpretation: C=A [b; b,

aj
: : aj
> Row interpretation : C =

5T
n

B =

al'B
alB

b,] = [Abi Aby
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Matrix multiplication

» Quter product interpretation Consider two n-vectors x,y € R™.

as,

The outer product is defined

T T1Yr T1Y2 X1Ys3 T1Yn
T2 T2Y1 X2Y2 X2Y3 T2Yn
XyT = |3 [yl Yo Y3 yﬂ] = | T3Y1 X3Y2 T3Y3 T3Yn
Tn TnlY1 TnplY2 Tnlys TnlYn

» We can represent the product between two matrices as the sum of outer products between the

columns and A and rows of B.

p
= E a,bZT
i=1
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Properties of matrix multiplication

> Not commutative: AB # BA
The product of two matrices might not alwasys be defined. When it is defined, AB and
BA need not match.

» Distributive: A(B+ C)=AB+BCand (A+B)C=AC+BC
» Associative: A (BC) = (AB)C

> Transpose: (AB)” = BTAT

» Scalar product: o (AB) = (c¢A)B = A (aB)
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Linear equations

> Matrices present a compact way to represent a set of linear equations. Consider the
following,

a1121 + a12xs ... + a1pTy = b1
ao121 + a9 . .. + a9ty = ba

as1r1 + az®s ... +azpry =b3 \ __, Ax — b, AcR™" xecR", beR™

Am1T1 + Am2T2 . . . + ATy = by,

a1 @12 a1z ... Gin 1 b1

a1 G2 a3 ... Q2 T2 bo
A= | . o . x=1. b=

Gml Om2 Am3 ... Gmn Tn bm
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Geometry of linear equations

1+ 2w0 = —1 [1 2} [wl] [—1}
— —
1+ w20 =1 1 1] |z 1

Two ways to view this: row view and the column view.

Traditional (row) view
x2

Column view

x2

3('1]

r1 + 229 = —1

xl
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Solving linear equations
Ax=b, AcR™" xecR", beR"™

> Three possible situations: NO SOLUTION, INFINITELY MANY SOLUTIONS, or
UNIQUE SOLUTION.

» When do have infinitely many or no solutions? In R3, we can visualize the different
situations.

Two parallel planes Three parallel planes No intersection Line intersection

Y AN

16/37



Sivakumar Balasubramanian Linear Systems/Matrices 17/37

Solving linear equations: Gaussian Elimination

a11T1 + a2 ...+ a1pTy = b1 . E1
21X + 22T . .. + a9 xy, = by 1 o

as1T1 + assxs ...+ aspx, = by : B3

Am1X1 + G2 ... + Ty, = b, : B,

» Gaussian elimination is a systematic way of simplifying the above equations to an
equivalent system that can be easily solved.
» Three simple operations are repeatedly performed:

» Interchanging of equations F; and E;.
» Replacing equation E; by aFE;, a # 0.
» Replacing equation E; by E; + aE;, o # 0.

» These three operations do not change the solution of the given linear system.
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Solving linear equations: Gaussian Elimination

a1 a2 - Qip | b

a1 @z -+ Qo | b

Augmented matrix: agi asz -+ azp | bs
L Gm1 Gm2 - Gmn bm i

» We can work with the augmented matrix instead of the equations.
» Gaussian elimination is carried out on the entire matrix.

» The matrix is simplified to a point, from where one can easily:

» find out the nature of the solutions for the system of equations; and
» find the solution (with a bit of extra work), if they exist.
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Solving linear equations: Gaussian Elimination

Ty + 2x9 — r3 = 1 1 2 -1 1
207 + 3xy + 4dxz = 4 — 2 3 4 4
—2x1 — 4dzo + r3 = —3 -2 —4 1] -3 ]
Gaussian Elimination
1 2 -1 1 1 2 -1 1 1 2 -1 1
2 3 4 | — 0 -1 6 2 — | 0 =1 6 2
-2 —4 1] -3 -2 —4 1] -3 0 0 —-1|-1

Now, we can perform back substitution on this triangularized system of linear equations,
$3:1; $2:4; 1 = —6

We can continue the simplification process through the Gauss-Jordan method.
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Solving linear equations: Gauss-Jordan Method

Continue the elimination upwards until all elements, except the ones in the main diagonal,
are zero.

1 1 -1 1 1 2 111 1 2 0|2
0—1 — | 0 0j-4|—]01 0|4|—]01 0|4
0 0 1 1 0 0 111 0 0 1|1

1 2 012 1 0 0] -6

01 0(4]—|010 4 | = 21=-6; z2=4; z3=1;

0 0 1(1 0 0 1 1

Everything worked out well without any problems. What can go wrong here?

1 2 -1 1 1 2 -1 1
Try solving the these systems, 2 3 4| 4, 2 3 4| 4
-2 -4 2|-3 -2 -4 2| -2

What is the difference between these two systems?
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Solving linear equations: Rectangular systems and Row Echelon Form

a11xr1 +a12xs ...+ a1y, = b1 . El b
air  ai2 - Qin 1

(2171 + 222 . .. + A2pTy = by 1 Ey as1  Goy -+ Qs | by

a31T1 + a2 ... +a3n®n =bg: B3 .| a1 azx -+ as, | b3
am1 Am?2 crr Gmn bm

Am1X1 + G2 ... + Ty, = b, 2 B,

Consider the following example,

1 -2 1 0 1| 1 1 -2 1 o0 1]1 1 -2 1 0 1|1
2 -4 1 -1 -2| 2|—]0 0 -1 -1 —4]l0|—0 0 -1 -1 —4]0
0 3]0 0
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Solving linear equations: Rectangular systems and Row Echelon Form

a1 ai2
a21 a22
a31 a32
Am1 Am2

Q1n
a2n
a3n

amn

Linear Systems/Matrices

b1
by
b3

bm

Things to notice about the echelon form:

O OO O Olx

O OO OO *

*

S O O OI*

E

o O O x

S Ol% % ¥ %

O O ¥ % ¥ ¥

*

O |*x ¥ * *

22/37

» If a particular row consists entirely of zeros, then all rows below that row also contain entirely of

ZEros.

» If the first non-zero entry in the i*" row occurs in the j* position, then all elements below the
row are zero from columns 1 to j.

ith

Columns containing pivot are called the basic columns.

form of the matrix A.

Rank of a matrix A is defined at the number of basic columns in the row echelon
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Solving linear equations: Reduced Row Echelon Form

k% ok k% ok % 1 = 0 0 0 *= O

0 0 x x % = 00 1 0 0 x O

0 0 0 % =x= % =% Gauss-Jordan 00 0 1 0 % O

0 0 0 0 *x =*= = 00 0 0 1 x O

00 0 0 0 0 = 00 0 0 0 0 1

00 0 0 0 0 O 00 0 0 0 0 O
1 -2 1 0 1)1 1 -2 0 -1 =-3]|1 1 -2 0 0 2|1
0 O -1 -1 40| —10 0 1 1 410 —10 0 1 0 —-1]0
0 0 0 -1 -51|0 0 0 0 -1 =510 0 0 0 1 510

» All non-basic columns can be represented as a linear combination of the basic columns.
» A non-basic column is a linear combination of only the columns before it.

» Scaling factors for each basic columns is determined by the corresponding elements of the
non-basic columns.

The reduced row echelon form reveals structure in the original matrix A.




Sivakumar Balasubramanian Linear Systems/Matrices 24/37

Solving linear equations: Homogenous Systems

a11%1 + 1222 ... + @1pTn =0

ail a2 s A1in 0
a2171 + a22T2 ... + a2pTp =0 @21 @ay -+ asm | O
as1r1 + as2T2 ...+ azpnrn, =0 N as1  asz -+ asn | O
am1 am?2 Amn O
Am1T1 + Gm2T2 . . . + AmnTn = 0
Consider the following case,
1 -2 1 0 110 1 -2 0 0 210
2 4 1 -1 —-2]|0]|—1|0 01 0 —-1]0
-1 2 1 1 210 0 0 0 1 510
1 2xo — 2x5 2 —2
x1 —2x2 +2x5 =0 xr1 = 2x2 — 225 29 o 1 0
r3 —x5 =0 — x3 = x5 — |z3| = s =x2 [0 +25 | 1
x4+ 525 =0 x4 = —Hx5 Z4 5x5 8 715

5 T5
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Solving linear equations: Homogenous Systems

X1 2 -2
T2 1 0
» (z3| =x2 |0 + x5 | 1 | represents the general solution of the system of equations.
Ty 0 )
Is 0 1

» In general, any system [A | 0] with rank (A) = r and r < n has the general solution of the form,
x=xzph +xpho+ . 4y, hy_,

where, the variables zf, ,x¢,,...,2, _ are called the free variables.

» Free variables are the one corresponding to the non-basic columns; the variable variables
corresponding to the basic columns are the basic variables.

» When does a homogenous system have a unique solution solution? — rank (A) = n.
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Solving linear equations: Non-homogenous Systems
a11x1 + a12T2 ... + a1nTn = b1
2121 + 2222 . .. + A2 Tn = b2

a31%1 + a32x2 ... + a3nTn = b3 N [A| b]

Am1T1 + Am2x2 . . . + GmnTn = by,

Consider the following case,

1 -2 1 0 1 1 1 2 0 O 211
2 4 1 -1 =2 2 — 0 0O 1 0 —-11|0
—1 2 1 1 2| —1 0 0O 0 1 510
1 1+ 2x9 — 2x5 1 2 —2
x1 — 2z + 225 =1 x1 =1+ 2x9 — 225 o o 0 1 0
r3 —x5 =0 — x3 =25 — |x3| = x5 = [0 +22 |0] +2a5 | 1
x4 + 525 =0 T4 = —HT z4 55 0 0 -5
° 4 ° x5 Ts5 0 0 1

The general solution of a non-homogenous system is sum of the particular solution and the
general solution of the associated homogenous system.
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Solving linear equations: Non-homogenous Systems

» The general solution for [A| 0] with rank (A) =r,

where, p is the particular solution and zf ,xy,,. ..

consistent.

ail a12
a21 a22
a3l a32

am1 am?2

There is a problem when ¢, # 0

Aln
a2n
a3n

amn

’xfnfr
»> When do we have a unique solution to this system? — rank (A) = n.
» What about the case when there are no solutions? When does that happen? — When the system is not

1

o oo

*

0
0
0

0

1
0
0

x=ptazphitapho+. . +ap, hn o

o= OO

» The augmented matrix [A | b] has the same number of basic columns as A.

v

> rank (A) = rank ([A]| b))

[A| b] — [E| ¢]: cis a non-basic column.

are the free variables.

0

= o o

*

*
*
*

C1
Cc2
C3
Cq

Cm
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LU Factorization of a Matrix

> A major theme of matrix algebra is to decompose matrices into simpler components that
provide insights into the nature of the matrix.

» A full rank square matrix A € R™*" can be decomposed into the product of a lower
triangular and an upper triangular matrix.

» Matrices associated with the three elementary operations:

Inter-changing Scaling Adding a multiple of
rows 2 and 4 row 2 row 2 to row 3

1 0 00 10 00 10 00

00 01 0 o 00 01 00

0 010 0 010 0 a1 0

01 00 0 0 01 0 0 01
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LU Factorization of a Matrix

1 -1 2 1 0 0|1 -1 2
» Consider the case: A = |2 0 2{=12 1 0] 1|0 2 -2 =LU
4 2 1 4 3 1110 0 -1

» LU factorization can be done only when no zero pivot is encountered during the Guassian
elimination process.

» Ax =Db becomes LUx = b: This is decomposed into two triangular systems,
Ux =y, Ly =Db. First solve Ly = b and then solve Ux =y

» Properties:

» Diagonal elements of L are 1, and U are not equal to zero.
» U is the final result of Gaussian elimination, and L is the matrix that reverses this process.
» Element [;; of L is the multiple of row j used to eliminate the a;; element of A.

» Uses of the LU factorization:

» Solving Ax = b; for several b;s. LU need to be calculated only once.
» Factorization requires no extra space.
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PA = LU Factorization of a Matrix

110 1 0 0]f1 10
> Consider thecase: A= |2 2 1| =12 0 1| |0 1 0| #LU
3 41 0 1 0[]0 0 1
» It turns out the second pivot become zero after the first elimination step, so LU

factorization cannot be done on A.

» The following however fixes this issue,
PA =L1LU

where, P is the permutation matrix, which is the elementary matrix for row exchanges.

» In the current example, the following allows matrix factorization.

1 0 0f 1 1 0O 1 0 01 1 O
PA=({0 0 1{|2 2 1| =10 1 0f |0 1 0| =LU
01 0|3 41 2 0 1110 0 1
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Linear transformations

» We had earlier seen linear functions of the form f : R — R, which could be expressed
as,
y=f(x)=wlx; w,xc€R", ycR

> A general version is when the range of the function is not in R but in R™:
y=/[f(x); xeR", yeR"

» Such a function has a natural representation of the form y = Ax, A € R™*"™,
» Any linear transformation can be expressed as y = Ax.

» Matrices can be thought of as representing a particular linear transformation.
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Another look at matrix multiplication

Why does matrix multiplication have this strange definition?

Consider the following two functions,

y= ) =Ax— 4]

[SUS

() =[] =
=s([a]) = au] =15 5] L)
z=h(u) = f(g(u) = f <|:CYU1 + Buz}) _ |:aau1 + aBus + byur + b5u2}

Yu1 + duz cauy + cfug + dyui + ddusz
_ [(aa + by) ur + (af + bd) uz] o |:ao¢ +by aB+ b(5:| |:u1:|
ug

v=g(u)=Bu— {Zﬂ

9 ™

(ca+dy)ur + (eB+dé)uz| ~ |ca+dy c¢B+dd

_ _ _la bl |a B| _ [ax+by aB+ b
zfA(Bu)*(AB)u:>AB7{C d} ['y 5:|7|:ca+dfy c,8+d6]

This definition of matrix multiplication is the most natural for dealing with composition of

linear transformations.
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Four Fundamental Subspaces
» C'(A): Column Space of A — the span of the columns of A.
C(A)={Ax|xeR"} CR™
» N (A): Nullspace of A — the set of all x € R™ that are mapped to zero by A.
N(A)={x|Ax=0} CR"
> C (AT): Row Space of A — the span of the rows of A.
C (AT) = {ATy\ y €ER"} CR"
> N (AT): Nullspace of AT — the set of all y € R™ that are mapped to zero by A”.
N(AT) = {y|ATy:0} CR™

This is also called the left nullspace of A.
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Linear Independence

» Given a set of vectors {vy,va,...v,}, v; € R™, how can we determine if this set is
linear independent?

» We need to verify, a;vi +asvo + -+ -+ apvy, =0

al 0
a 0

Vi va o vy _2 =1|.|=Va=0,; N(V)={0}, rank(V)=n
an 0

» This is also equivalent to saying that when the rank (A) =n = the columns of A
form an independent set of vectors.

» When do the rows of A form an independent set?
» What about both rows and columns? When does that happen?
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Examples
2 -1 0 1] [= 1
R S T B A I Y N B
6 —2 5 1| |zs| | 0
2 30 -1 |z 6
—— =
A X b

» Now solve the above for a different

b=[1 11 1]"

-1
3
-2
3

N O =N

» Now solve the above for a different

o= O

0

—92
T1 13
T2l = g7
T3 14

b= 11 1]"
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T
2 -1 -2 1
x3

» Now solve the above for a different

b=[ 1]"
» Reduce this to the row echelon form:
1 -2 1
A= 2 -4 1
-1 2 2
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Dimension and basis of the four fundamental subspaces

1 -2 1
A=| 2 -4 1|: BEA=R » Column space C'(A)
-1 2 2 » dim C(A) =rank (A)=r
> ' — P
1 0 0 1 -9 1 Basis of C(A) = Pivot colums of A.
-2 1 0|]A=|0 0 -1 > Nullspace N(A)
—5 3 1 0 0 0 > dim N(A)=n—r
E R > Basis of N(A) = {hy,hy...h,,_,.}.
1 [1 2 > Row space C(AT)
Pi Is of A: 2 1 N (A): 1
Ivot cols o ] 5 5 ( ) X2 0 > dim C(AT) — rank (AT) _

rank (A) =r
> Basis of C(AT) = Columns of RY.

> Left Nullspace N(AT)

> dim N(AT)=m —r
» Basis of N(AT) = Colums of EJ

We can restructure EA = R — {El] A= {RI]
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Matrix Inverse

>

Consider the square matrix A € R"*™. B € R"*" is the inverse of A, if AB=BA =1, and
B is represented as A1,

Not all matrices have inverses. A matrix with an inverse is called non-singular, otherwise it is
called singular.

» For a non-singular matrix A, A~! is unique. A~! is both the left and right inverse.

A matrix A has an inverse, if and only if A is full rank, i.e. rank (A) =n

» The inverse of a non-signular matrix can be determined through Gauss-Jordan method.

v

1 -2 2
(AT Sus=dordan, A1 etstry: |2 1 0
11 -1

Ax = b can be solved as follows, x = A~ 'b. It is never solved like this in practice.

Inverse of product of matrices, (AB) ' = B~1A~!.

(A=) "' =Aand (A7) = (A7)}



