(ロ) (型) (E) (E) (E) (O)

Linear Algebra and Random Processes Matrix Inverses

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

References

- S Boyd, Applied Linear Algebra: Chapters 11.
- ► G Strang, Linear Algebra: Chapters 1.

Representation of vectors in a basis

Consider the vector space ℝⁿ with basis {v₁, v₂,...v_n}. Any vector in b ∈ ℝⁿ can be representated as a linear combination of v_is,

$$\mathbf{b} = \sum_{i=1}^{n} a_i \mathbf{v}_i = \mathbf{V} \mathbf{a}; \ \mathbf{a} \in \mathbb{R}^n, \ \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

 $\{v_1, v_2\}$, $\{u_1, u_2\}$ and $\{e_1, e_2\}$ are valid basis for \mathbb{R}^2 , and the presentation for b in each one of them is different.

 \blacktriangleright Finding out ${f a}$ is easiest when we are dealing with an orthonormal basis ${f U}$, in which case ${f a}$ is given by,

$$\mathbf{a} = \begin{bmatrix} \mathbf{u}_1^T b \\ \mathbf{u}_2^T b \\ \vdots \\ \mathbf{u}_n^T b \end{bmatrix} = \mathbf{U}^T \mathbf{b} = \mathbf{b}_U$$

・ロト・西ト・田・・田・ シック

Representation of vectors in a basis

Consider a vector **b** whose representation in the standard basis is $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

• Consider a basis
$$\mathcal{V} = \left\{ \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}, \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \right\}$$
. Find out $\mathbf{b}_{\mathcal{V}}$.

Representation of vectors in a basis

Consider a vector **b** whose representation in the standard basis is $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

• Consider a basis
$$\mathcal{V} = \left\{ \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}, \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \right\}$$
. Find out $\mathbf{b}_{\mathcal{V}}$.

•
$$\mathcal{U} = \left\{ \begin{bmatrix} 1\\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2}\\ 1 \end{bmatrix} \right\}$$
. Find out $\mathbf{b}_{\mathcal{U}}$.

Representation of vectors in a basis

Consider a vector **b** whose representation in the standard basis is $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

• Consider a basis
$$\mathcal{V} = \left\{ \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}, \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \right\}$$
. Find out $\mathbf{b}_{\mathcal{V}}$.

•
$$\mathcal{U} = \left\{ \begin{bmatrix} 1\\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2}\\ 1 \end{bmatrix} \right\}$$
. Find out $\mathbf{b}_{\mathcal{U}}$.
• $\mathcal{W} = \left\{ \begin{bmatrix} 1\\ 1 \end{bmatrix}, \begin{bmatrix} -1\\ \frac{1}{2} \end{bmatrix} \right\}$. Find out $\mathbf{b}_{\mathcal{W}}$.

Matrix Inverse

- Consider the equation $A\mathbf{x} = \mathbf{y}$, where $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
- Let us assume A is non-singular \implies columns of A represent a basis for \mathbb{R}^n .
- ▶ What does x represent? It is the representation of y in the basis consisitng of the columns of A.

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n x_i \mathbf{a}_i \implies \mathbf{x} = \mathbf{A}^{-1}\mathbf{y} = \begin{bmatrix} \tilde{\mathbf{b}}_1^T \\ \tilde{\mathbf{b}}_2^T \\ \vdots \\ \tilde{\mathbf{b}}_n^T \end{bmatrix} \mathbf{y} = \begin{bmatrix} \tilde{\mathbf{b}}_1^T \mathbf{y} \\ \tilde{\mathbf{b}}_2^T \mathbf{y} \\ \vdots \\ \tilde{\mathbf{b}}_n^T \mathbf{y} \end{bmatrix}$$

 \blacktriangleright A^{-1} is a matrix that allows change of basis to the columns of A from the standard basis!

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Matrix Inverse

- Consider the equation Ax = y, where $A \in \mathbb{R}^{n \times n}$ and $x, y \in \mathbb{R}^{n}$.
- Let us assume A is non-singular \implies columns of A represent a basis for \mathbb{R}^n .
- ▶ What does x represent? It is the representation of y in the basis consisitng of the columns of A.

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n x_i \mathbf{a}_i \implies \mathbf{x} = \mathbf{A}^{-1}\mathbf{y} = \begin{bmatrix} \tilde{\mathbf{b}}_1^T \\ \tilde{\mathbf{b}}_2^T \\ \vdots \\ \tilde{\mathbf{b}}_n^T \end{bmatrix} \mathbf{y} = \begin{bmatrix} \tilde{\mathbf{b}}_1^T \mathbf{y} \\ \tilde{\mathbf{b}}_2^T \mathbf{y} \\ \vdots \\ \tilde{\mathbf{b}}_n^T \mathbf{y} \end{bmatrix}$$

 \blacktriangleright A^{-1} is a matrix that allows change of basis to the columns of A from the standard basis!

• $\mathcal{W} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\\frac{1}{2} \end{bmatrix} \right\}$. Find $\mathbf{b}_{\mathcal{W}}$ by calculating the inverse of the matrix $\mathbf{W} = \begin{bmatrix} 1 & -1\\1 & \frac{1}{2} \end{bmatrix}$. Does your answer match that of the previous approach?

• What about
$$\mathcal{V} = \left\{ \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}, \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \right\}$$
. What is $\mathbf{b}_{\mathcal{V}}$?

Matrix Inverse

Rows of \mathbf{A} and columns of \mathbf{A}^{-1}

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 2 & -1\\ 1 & \frac{1}{2} \end{bmatrix}$$
$$\mathbf{V}^{-1} = \begin{bmatrix} \tilde{\mathbf{u}}_1^T\\ \tilde{\mathbf{u}}_2^T \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{1}{2} & 1\\ -1 & 2 \end{bmatrix}$$
$$\mathbf{v}_1^T \tilde{\mathbf{u}}_1 = \mathbf{v}_2^T \tilde{\mathbf{u}}_2 = \tilde{\mathbf{v}}_1^T \mathbf{u}_1 = \tilde{\mathbf{v}}_2^T \mathbf{u}_2 = 1$$

$$\mathbf{v}_1^T \tilde{\mathbf{u}}_2 = \mathbf{v}_2^T \tilde{\mathbf{u}}_1 = \tilde{\mathbf{v}}_1^T \mathbf{u}_2 = \tilde{\mathbf{v}}_2^T \mathbf{u}_1 = 0$$

Rows of ${\bf A}$ and columns of ${\bf A}^{-1}$

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 2 & -1\\ 1 & \frac{1}{2} \end{bmatrix}$$
$$\mathbf{V}^{-1} = \begin{bmatrix} \tilde{\mathbf{u}}_1^T\\ \tilde{\mathbf{u}}_2^T \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{1}{2} & 1\\ -1 & 2 \end{bmatrix}$$
$$\mathbf{v}_1^T \tilde{\mathbf{u}}_1 = \mathbf{v}_2^T \tilde{\mathbf{u}}_2 = \tilde{\mathbf{v}}_1^T \mathbf{u}_1 = \tilde{\mathbf{v}}_2^T \mathbf{u}_2 = 1$$
$$\mathbf{v}_1^T \tilde{\mathbf{u}}_2 = \mathbf{v}_2^T \tilde{\mathbf{u}}_1 = \tilde{\mathbf{v}}_1^T \mathbf{u}_2 = \tilde{\mathbf{v}}_2^T \mathbf{u}_1 = 0$$

Verify these for
$$\mathbf{W} = \begin{bmatrix} 1 & -1 \\ 1 & \frac{1}{2} \end{bmatrix}$$
 and $\mathbf{V} = \begin{bmatrix} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix}$.

Left Inverse

- Consider a rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. There exists no inverse \mathbf{A}^{-1} for this matrix.
- \blacktriangleright But, does there exist two matrices $\mathbf{B},\mathbf{C}\in\mathbb{R}^{n\times m}$, such that,

 $\mathbf{CA} = \mathbf{I}_n$ and $\mathbf{AB} = \mathbf{I}_m$

- Both cannot be true for a rectangular matrix, only one can be true when the matrix is full rank.
- ► A rectangular matrix can only have either a left or a right inverse.

Left Inverse

- Consider a rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. There exists no inverse \mathbf{A}^{-1} for this matrix.
- \blacktriangleright But, does there exist two matrices $\mathbf{B},\mathbf{C}\in\mathbb{R}^{n\times m}$, such that,

 $\mathbf{CA} = \mathbf{I}_n$ and $\mathbf{AB} = \mathbf{I}_m$

- Both cannot be true for a rectangular matrix, only one can be true when the matrix is full rank.
- ► A rectangular matrix can only have either a left or a right inverse.

Consider a matrix $\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$. Let $\mathbf{B}, \mathbf{C} \in \mathbb{R}^{2 \times 3}$. Can you explain why only $\mathbf{C}\mathbf{A} = \mathbf{I}_2$ can be true and not $\mathbf{A}\mathbf{B} = \mathbf{I}_3$? Can you also explain why \mathbf{C} is not unique?

- $\blacktriangleright \text{ Any non-zero } \mathbf{a} \in \mathbb{R}^{n \times 1} \text{ is left invertible: } \mathbf{ba} = 1, \ \mathbf{b} \in \mathbb{R}^{1 \times n}; \ \mathbf{b}^T = \frac{\mathbf{a}}{\|\mathbf{a}\|^2} + \alpha \mathbf{a}^{\perp}$
- This can be generalized to $\mathbf{A} \in \mathbb{R}^{m \times n}$, m > n.

$$\left(\mathbf{C}+\hat{\mathbf{C}}
ight)\mathbf{A}=\mathbf{I}_{m}$$
 where $\mathbf{C},\hat{\mathbf{C}}\in\mathbb{R}^{n imes m},~~\hat{\mathbf{C}}\mathbf{A}=\mathbf{0}$

- Condition for left inverse of A to exist: Colmuns of A must be independent. $\rightarrow rank(\mathbf{A}) = n \longrightarrow \mathbf{A}\mathbf{x} = 0 \implies \mathbf{x} = 0.$
- ▶ Ax = b can be solved, if and only if A(Cb) = b, where $CA = I_n$.

(ロ)、(型)、(E)、(E)、(E)、(O)への

- $\blacktriangleright \text{ Any non-zero } \mathbf{a} \in \mathbb{R}^{n \times 1} \text{ is left invertible: } \mathbf{ba} = 1, \ \mathbf{b} \in \mathbb{R}^{1 \times n}; \ \mathbf{b}^T = \frac{\mathbf{a}}{\|\mathbf{a}\|^2} + \alpha \mathbf{a}^{\perp}$
- This can be generalized to $\mathbf{A} \in \mathbb{R}^{m \times n}$, m > n.

$$\left(\mathbf{C}+\hat{\mathbf{C}}
ight)\mathbf{A}=\mathbf{I}_{m}$$
 where $\mathbf{C},\hat{\mathbf{C}}\in\mathbb{R}^{n imes m},~~\hat{\mathbf{C}}\mathbf{A}=\mathbf{0}$

- Condition for left inverse of A to exist: Colmuns of A must be independent. $\rightarrow rank(\mathbf{A}) = n \longrightarrow \mathbf{A}\mathbf{x} = 0 \implies \mathbf{x} = 0.$
- ▶ Ax = b can be solved, if and only if A(Cb) = b, where $CA = I_n$.

• Let
$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$$
. Find a complete solution for the left inverse of \mathbf{A} such that $(\mathbf{C} + \hat{\mathbf{C}}) = \mathbf{I}_n$.

(ロ)、(型)、(E)、(E)、(E)、(O)への

- Any non-zero $\mathbf{a} \in \mathbb{R}^{n \times 1}$ is left invertible: $\mathbf{b}\mathbf{a} = 1$, $\mathbf{b} \in \mathbb{R}^{1 \times n}$; $\mathbf{b}^T = \frac{\mathbf{a}}{\|\mathbf{a}\|^2} + \alpha \mathbf{a}^{\perp}$
- This can be generalized to $\mathbf{A} \in \mathbb{R}^{m \times n}$, m > n.

$$\left(\mathbf{C}+\hat{\mathbf{C}}
ight)\mathbf{A}=\mathbf{I}_{m}$$
 where $\mathbf{C},\hat{\mathbf{C}}\in\mathbb{R}^{n imes m},~~\hat{\mathbf{C}}\mathbf{A}=\mathbf{0}$

- Condition for left inverse of A to exist: Colmuns of A must be independent. $\rightarrow rank(\mathbf{A}) = n \longrightarrow \mathbf{A}\mathbf{x} = 0 \implies \mathbf{x} = 0.$
- ▶ Ax = b can be solved, if and only if A(Cb) = b, where $CA = I_n$.

• Let
$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$$
. Find a complete solution for the left inverse of \mathbf{A} such that $(\mathbf{C} + \hat{\mathbf{C}}) = \mathbf{I}_n$.

• Consider the system, $\mathbf{A}\mathbf{x} = \mathbf{b}$. $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. Find \mathbf{x} .

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- Any non-zero $\mathbf{a} \in \mathbb{R}^{n \times 1}$ is left invertible: $\mathbf{b}\mathbf{a} = 1$, $\mathbf{b} \in \mathbb{R}^{1 \times n}$; $\mathbf{b}^T = \frac{\mathbf{a}}{\|\mathbf{a}\|^2} + \alpha \mathbf{a}^{\perp}$
- This can be generalized to $\mathbf{A} \in \mathbb{R}^{m \times n}$, m > n.

$$\left(\mathbf{C}+\hat{\mathbf{C}}
ight)\mathbf{A}=\mathbf{I}_{m}$$
 where $\mathbf{C},\hat{\mathbf{C}}\in\mathbb{R}^{n imes m},~~\hat{\mathbf{C}}\mathbf{A}=\mathbf{0}$

- Condition for left inverse of A to exist: Colmuns of A must be independent. $\rightarrow rank(\mathbf{A}) = n \longrightarrow \mathbf{A}\mathbf{x} = 0 \implies \mathbf{x} = 0.$
- ▶ Ax = b can be solved, if and only if A(Cb) = b, where $CA = I_n$.

• Let
$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$$
. Find a complete solution for the left inverse of \mathbf{A} such that $(\mathbf{C} + \hat{\mathbf{C}}) = \mathbf{I}_n$.

• Consider the system, $\mathbf{A}\mathbf{x} = \mathbf{b}$. $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. Find \mathbf{x} .

• What happens when
$$\mathbf{b} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
. What is \mathbf{x} ?

- ▶ For $A \in \mathbb{R}^{m \times n}$, n > m with full rank, $AB = I_m \longrightarrow B$ is the right inverse.
- ▶ Right inverse of A exists only if the rows of A are independent, i.e. rank(A) = m $\rightarrow A^T x = 0 \implies x = 0$
- ▶ Ax = b can be solved for any b. $x = Bb \implies A(Bb) = b$.
- \blacktriangleright There are an infitnite number of Bs \implies an infinite number of solutions x.

- ▶ For $A \in \mathbb{R}^{m \times n}$, n > m with full rank, $AB = I_m \longrightarrow B$ is the right inverse.
- ▶ Right inverse of A exists only if the rows of A are independent, i.e. rank(A) = m $\rightarrow A^T x = 0 \implies x = 0$
- ▶ Ax = b can be solved for any b. $x = Bb \implies A(Bb) = b$.
- \blacktriangleright There are an infitnite number of Bs \implies an infinite number of solutions x.

• Let
$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & -1 \end{bmatrix}$$
. Find a complete solution for the right inverse of \mathbf{A} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ For $A \in \mathbb{R}^{m \times n}$, n > m with full rank, $AB = I_m \longrightarrow B$ is the right inverse.
- ▶ Right inverse of A exists only if the rows of A are independent, i.e. rank(A) = m $\rightarrow A^T x = 0 \implies x = 0$
- $\blacktriangleright \mathbf{A}\mathbf{x} = \mathbf{b} \text{ can be solved for any } \mathbf{b}. \ \mathbf{x} = \mathbf{B}\mathbf{b} \implies \mathbf{A}(\mathbf{B}\mathbf{b}) = \mathbf{b}.$
- \blacktriangleright There are an infitnite number of Bs \implies an infinite number of solutions ${\bf x}.$
- Let $\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & -1 \end{bmatrix}$. Find a complete solution for the right inverse of \mathbf{A} . • Solve $\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Compare the solutions from Gauss-Jordan method and the ones obtained using right-inverses.

- ▶ For $A \in \mathbb{R}^{m \times n}$, n > m with full rank, $AB = I_m \longrightarrow B$ is the right inverse.
- ▶ Right inverse of A exists only if the rows of A are independent, i.e. rank(A) = m $\rightarrow A^T x = 0 \implies x = 0$
- $\blacktriangleright \mathbf{A}\mathbf{x} = \mathbf{b} \text{ can be solved for any } \mathbf{b}. \ \mathbf{x} = \mathbf{B}\mathbf{b} \implies \mathbf{A}(\mathbf{B}\mathbf{b}) = \mathbf{b}.$
- \blacktriangleright There are an infitnite number of Bs \implies an infinite number of solutions $\mathbf{x}.$
- Let $\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & -1 \end{bmatrix}$. Find a complete solution for the right inverse of \mathbf{A} . • Solve $\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Compare the solutions from Gauss-Jordan method and the ones obtained using right-inverses.
- Let $AB = I_m$. What about the relationship between A^T and B^T ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Fundamental subspaces of left and right inverses

- $\blacktriangleright \mathbf{A} \in \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = n$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) \subset \mathbb{R}^m$ $\mathcal{N}(\mathbf{A}^T) \subset \mathbb{R}^m$ $\mathcal{C}(\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$
- ▶ Let $\mathbf{C} \in \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{CA} = \mathbf{I}_n$. What is $rank(\mathbf{C})$?
- What about the subspaces of the left inverse?

$$\mathcal{C}(\mathbf{C})$$

$$\mathcal{N}(\mathbf{C}^T)$$

$$\mathcal{C}(\mathbf{C}^T)$$

$$\mathcal{N}(\mathbf{C})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Fundamental subspaces of left and right inverses

- $\blacktriangleright \mathbf{A} \in \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = n$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) \subset \mathbb{R}^m$ $\mathcal{N}(\mathbf{A}^T) \subset \mathbb{R}^m$ $\mathcal{C}(\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$
- ▶ Let $\mathbf{C} \in \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{CA} = \mathbf{I}_n$. What is $rank(\mathbf{C})$?
- What about the subspaces of the left inverse?
 - $\mathcal{C} (\mathbf{C}) = \mathcal{C} (\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N} (\mathbf{C}^T)$ $\mathcal{C} (\mathbf{C}^T)$ $\mathcal{N} (\mathbf{C})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Fundamental subspaces of left and right inverses

- $\blacktriangleright \mathbf{A} \in \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = n$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) \subset \mathbb{R}^m$ $\mathcal{N}(\mathbf{A}^T) \subset \mathbb{R}^m$ $\mathcal{C}(\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$
- ▶ Let $\mathbf{C} \in \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{CA} = \mathbf{I}_n$. What is $rank(\mathbf{C})$?
- What about the subspaces of the left inverse?
 - $\mathcal{C} (\mathbf{C}) = \mathcal{C} (\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N} (\mathbf{C}^T) = \mathcal{N} (\mathbf{A}) = \{\mathbf{0}\}$ $\mathcal{C} (\mathbf{C}^T)$ $\mathcal{N} (\mathbf{C})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Fundamental subspaces of left and right inverses

- $\blacktriangleright \mathbf{A} \in \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = n$
- ► Subspaces of \mathbf{A} : $\mathcal{C}(\mathbf{A}) \subset \mathbb{R}^m$ $\mathcal{N}(\mathbf{A}^T) \subset \mathbb{R}^m$ $\mathcal{C}(\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$
- ▶ Let $\mathbf{C} \in \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{CA} = \mathbf{I}_n$. What is $rank(\mathbf{C})$?
- What about the subspaces of the left inverse?
 - $\mathcal{C} (\mathbf{C}) = \mathcal{C} (\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N} (\mathbf{C}^T) = \mathcal{N} (\mathbf{A}) = \{\mathbf{0}\}$ $\mathcal{C} (\mathbf{C}^T) = \mathcal{C} (\mathbf{A}) \subset \mathbb{R}^m$ $\mathcal{N} (\mathbf{C})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Fundamental subspaces of left and right inverses

- $\blacktriangleright \mathbf{A} \in \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = n$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) \subset \mathbb{R}^m$ $\mathcal{N}(\mathbf{A}^T) \subset \mathbb{R}^m$ $\mathcal{C}(\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$
- ▶ Let $\mathbf{C} \in \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{CA} = \mathbf{I}_n$. What is $rank(\mathbf{C})$?
- What about the subspaces of the left inverse?

Fundamental subspaces of left and right inverses

Left Inverse

- $\blacktriangleright \mathbf{A} \in \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = n$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) \subset \mathbb{R}^m$ $\mathcal{N}(\mathbf{A}^T) \subset \mathbb{R}^m$ $\mathcal{C}(\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$
- ▶ Let $\mathbf{C} \in \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{CA} = \mathbf{I}_n$. What is $rank(\mathbf{C})$?
- What about the subspaces of the left inverse?
 - $\begin{array}{l} \blacktriangleright \ \ \mathcal{C}\left(\mathbf{C}\right) = \mathcal{C}\left(\mathbf{A}^{T}\right) = \mathbb{R}^{n} \\ \blacktriangleright \ \ \mathcal{N}\left(\mathbf{C}^{T}\right) = \mathcal{N}\left(\mathbf{A}\right) = \{\mathbf{0}\} \\ \vdash \ \ \mathcal{C}\left(\mathbf{C}^{T}\right) = \mathcal{C}\left(\mathbf{A}\right) \subset \mathbb{R}^{m} \\ \vdash \ \ \mathcal{N}\left(\mathbf{C}\right) = \mathcal{N}\left(\mathbf{A}^{T}\right) \subset \mathbb{R}^{m} \end{array}$

Right Inverse

- $\blacktriangleright \mathbf{A} \subset \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = m$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) = \mathbb{R}^{m}$ $\mathcal{N}(\mathbf{A}^{T}) = \{\mathbf{0}\}$ $\mathcal{C}(\mathbf{A}^{T}) \subset \mathbb{R}^{n}$ $\mathcal{N}(\mathbf{A}) \subset \mathbb{R}^{n}$
- ▶ Let $\mathbf{B} \subset \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{AB} = \mathbf{I}_m$. What is $rank(\mathbf{B})$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- What about the subspaces of the left inverse?
 - $\mathcal{C} (\mathbf{B})$ $\mathcal{N} (\mathbf{B}^T)$ $\mathcal{C} (\mathbf{B}^T)$ $\mathcal{N} (\mathbf{B})$

Fundamental subspaces of left and right inverses

Left Inverse

- $\blacktriangleright \mathbf{A} \in \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = n$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) \subset \mathbb{R}^m$ $\mathcal{N}(\mathbf{A}^T) \subset \mathbb{R}^m$ $\mathcal{C}(\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$
- ▶ Let $\mathbf{C} \in \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{CA} = \mathbf{I}_n$. What is $rank(\mathbf{C})$?
- What about the subspaces of the left inverse?

Right Inverse

- $\blacktriangleright \mathbf{A} \subset \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = m$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) = \mathbb{R}^m$ $\mathcal{N}(\mathbf{A}^T) = \{\mathbf{0}\}$ $\mathcal{C}(\mathbf{A}^T) \subset \mathbb{R}^n$ $\mathcal{N}(\mathbf{A}) \subset \mathbb{R}^n$
- ▶ Let $\mathbf{B} \subset \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{AB} = \mathbf{I}_m$. What is $rank(\mathbf{B})$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- What about the subspaces of the left inverse?
 - $\mathcal{C} (\mathbf{B}) = \mathcal{C} (\mathbf{A}^T) \subset \mathbb{R}^n$ $\mathcal{N} (\mathbf{B}^T)$ $\mathcal{C} (\mathbf{B}^T)$
 - $\blacktriangleright \mathcal{N}(\mathbf{B})$

Fundamental subspaces of left and right inverses

Left Inverse

- $\blacktriangleright \mathbf{A} \in \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = n$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) \subset \mathbb{R}^m$ $\mathcal{N}(\mathbf{A}^T) \subset \mathbb{R}^m$ $\mathcal{C}(\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$
- ▶ Let $\mathbf{C} \in \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{CA} = \mathbf{I}_n$. What is $rank(\mathbf{C})$?
- What about the subspaces of the left inverse?

Right Inverse

- $\blacktriangleright \mathbf{A} \subset \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = m$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) = \mathbb{R}^{m}$ $\mathcal{N}(\mathbf{A}^{T}) = \{\mathbf{0}\}$ $\mathcal{C}(\mathbf{A}^{T}) \subset \mathbb{R}^{n}$ $\mathcal{N}(\mathbf{A}) \subset \mathbb{R}^{n}$
- ▶ Let $\mathbf{B} \subset \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{AB} = \mathbf{I}_m$. What is $rank(\mathbf{B})$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- What about the subspaces of the left inverse?
 - $\blacktriangleright \ \mathcal{C}\left(\mathbf{B}\right) = \mathcal{C}\left(\mathbf{A}^{T}\right) \subset \mathbb{R}^{n}$
 - $\blacktriangleright \mathcal{N}\left(\mathbf{B}^{T}\right) = \mathcal{N}\left(\mathbf{A}\right) \subset \mathbb{R}^{n}$
 - $\triangleright \mathcal{C}(\mathbf{B}^T)$ $\triangleright \mathcal{N}(\mathbf{B})$

Fundamental subspaces of left and right inverses

Left Inverse

- $\blacktriangleright \mathbf{A} \in \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = n$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) \subset \mathbb{R}^m$ $\mathcal{N}(\mathbf{A}^T) \subset \mathbb{R}^m$ $\mathcal{C}(\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$
- ▶ Let $\mathbf{C} \in \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{CA} = \mathbf{I}_n$. What is $rank(\mathbf{C})$?
- What about the subspaces of the left inverse?

Right Inverse

- $\blacktriangleright \mathbf{A} \subset \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = m$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) = \mathbb{R}^m$ $\mathcal{N}(\mathbf{A}^T) = \{\mathbf{0}\}$ $\mathcal{C}(\mathbf{A}^T) \subset \mathbb{R}^n$ $\mathcal{N}(\mathbf{A}) \subset \mathbb{R}^n$
- ▶ Let $\mathbf{B} \subset \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{AB} = \mathbf{I}_m$. What is $rank(\mathbf{B})$?
- What about the subspaces of the left inverse?
 - $\blacktriangleright \ \mathcal{C}\left(\mathbf{B}\right) = \mathcal{C}\left(\mathbf{A}^{T}\right) \subset \mathbb{R}^{n}$
 - $\blacktriangleright \ \mathcal{N}\left(\mathbf{B}^{T}\right) = \mathcal{N}\left(\mathbf{A}\right) \subset \mathbb{R}^{n}$

$$\mathcal{C} \left(\mathbf{B}^T \right) = \mathcal{C} \left(\mathbf{A} \right) = \mathbb{R}^m$$
$$\mathcal{N} \left(\mathbf{B} \right)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Fundamental subspaces of left and right inverses

Left Inverse

- $\blacktriangleright \mathbf{A} \in \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = n$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) \subset \mathbb{R}^m$ $\mathcal{N}(\mathbf{A}^T) \subset \mathbb{R}^m$ $\mathcal{C}(\mathbf{A}^T) = \mathbb{R}^n$ $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$
- ▶ Let $\mathbf{C} \in \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{CA} = \mathbf{I}_n$. What is $rank(\mathbf{C})$?
- What about the subspaces of the left inverse?
 - $\begin{array}{l} \blacktriangleright \ \mathcal{C}\left(\mathbf{C}\right) = \mathcal{C}\left(\mathbf{A}^{T}\right) = \mathbb{R}^{n} \\ \blacktriangleright \ \mathcal{N}\left(\mathbf{C}^{T}\right) = \mathcal{N}\left(\mathbf{A}\right) = \{\mathbf{0}\} \\ \vdash \ \mathcal{C}\left(\mathbf{C}^{T}\right) = \mathcal{C}\left(\mathbf{A}\right) \subset \mathbb{R}^{m} \\ \blacktriangleright \ \mathcal{N}\left(\mathbf{C}\right) = \mathcal{N}\left(\mathbf{A}^{T}\right) \subset \mathbb{R}^{m} \end{array}$

Right Inverse

- $\blacktriangleright \mathbf{A} \subset \mathbb{R}^{m \times n}, \ rank\left(\mathbf{A}\right) = m$
- ► Subspaces of A: $\mathcal{C}(\mathbf{A}) = \mathbb{R}^{m}$ $\mathcal{N}(\mathbf{A}^{T}) = \{\mathbf{0}\}$ $\mathcal{C}(\mathbf{A}^{T}) \subset \mathbb{R}^{n}$ $\mathcal{N}(\mathbf{A}) \subset \mathbb{R}^{n}$
- ▶ Let $\mathbf{B} \subset \mathbb{R}^{n \times m}$ be the left inverse of \mathbf{A} , such that $\mathbf{AB} = \mathbf{I}_m$. What is $rank(\mathbf{B})$?
- What about the subspaces of the left inverse?
 - $\blacktriangleright \ \mathcal{C}\left(\mathbf{B}\right) = \mathcal{C}\left(\mathbf{A}^{T}\right) \subset \mathbb{R}^{n}$
 - $\blacktriangleright \ \mathcal{N}\left(\mathbf{B}^{T}\right) = \mathcal{N}\left(\mathbf{A}\right) \subset \mathbb{R}^{n}$

$$\triangleright \ \mathcal{C}\left(\mathbf{B}^{T}\right) = \mathcal{C}\left(\mathbf{A}\right) = \mathbb{R}^{m}$$

 $\blacktriangleright \mathcal{N}(\mathbf{B}) = \mathcal{N}(\mathbf{A}^T) = \{\mathbf{0}\}\$

Pseudo Inverse

▶ Consider a tall, skinny matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with independent columns. It turns out the Gram matrix $\mathbf{A}^T \mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible. If that is the case then,

$$\left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T}\mathbf{A} = \mathbf{I}_{n}; \quad \left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T}$$
 is a left inverse.

- $\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ is called the *pseudo inverse* or the *Moore-Penrose inverse*.
- For the case of a fat, wide matrix, we have $\mathbf{A}^{\dagger} = \mathbf{A}^{T} \left(\mathbf{A} \mathbf{A}^{T} \right)^{-1}$.
- When A is square and invertible, $A^{\dagger} = A^{-1}$.

Pseudo Inverse

▶ Consider a tall, skinny matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with independent columns. It turns out the Gram matrix $\mathbf{A}^T \mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible. If that is the case then,

$$\left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T}\mathbf{A} = \mathbf{I}_{n}; \quad \left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T}$$
 is a left inverse.

- $\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ is called the *pseudo inverse* or the *Moore-Penrose inverse*.
- For the case of a fat, wide matrix, we have $\mathbf{A}^{\dagger} = \mathbf{A}^{T} \left(\mathbf{A} \mathbf{A}^{T} \right)^{-1}$.
- When A is square and invertible, $A^{\dagger} = A^{-1}$.

• Solve
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 using the \mathbf{A}^{\dagger} . $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. Find \mathbf{x} .

Pseudo Inverse

▶ Consider a tall, skinny matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with independent columns. It turns out the Gram matrix $\mathbf{A}^T \mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible. If that is the case then,

$$\left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T}\mathbf{A} = \mathbf{I}_{n}; \quad \left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T}$$
 is a left inverse.

- $\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ is called the *pseudo inverse* or the *Moore-Penrose inverse*.
- For the case of a fat, wide matrix, we have $\mathbf{A}^{\dagger} = \mathbf{A}^{T} \left(\mathbf{A} \mathbf{A}^{T} \right)^{-1}$.
- When A is square and invertible, $A^{\dagger} = A^{-1}$.

• Solve
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 using the \mathbf{A}^{\dagger} . $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. Find \mathbf{x} .

• Compare \mathbf{A}^{\dagger} with that of the general left inverse \mathbf{C} . Calculate $\|\mathbf{C}\|^2$ and find out the $\min \|\mathbf{C}\|^2$. What is $\|\mathbf{A}^{\dagger}\|^2$?

Matrix Inverse and Pseudo Inverse through **QR** factorization

• Consider an invertible, square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$.

$$\mathbf{A} = \mathbf{Q}\mathbf{R} \implies \mathbf{A}^{-1} = (\mathbf{Q}\mathbf{R})^{-1} = \mathbf{R}^{-1}\mathbf{Q}^{-1} = \mathbf{R}^{-1}\mathbf{Q}^{T}$$

where, $\mathbf{R}, \mathbf{Q} \in \mathbb{R}^{n \times n}$. \mathbf{R} is upper triangular, and \mathbf{Q} is an orthogonal matrix.

▶ In the case of a left invertible rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, we can factorize $\mathbf{A} = \mathbf{QR}$, with $\mathbf{Q} \in \mathbb{R}^{m \times n}$ and $\mathbf{R} \in \mathbb{R}^{m \times m}$.

$$\mathbf{A}^{\dagger} = \left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T} = \left(\mathbf{R}^{T}\mathbf{Q}^{T}\mathbf{Q}\mathbf{R}\right)^{-1}\mathbf{R}^{T}\mathbf{Q}^{T} = \left(\mathbf{R}^{T}\mathbf{R}\right)^{-1}\mathbf{R}^{T}\mathbf{Q}^{T} = \mathbf{R}^{-1}\mathbf{Q}^{T}$$

▶ For a right invertible wide, fat matrix, we can find out the pseudo-inverse of A^T, and then take the transpose of the pseudo-inverse.

$$\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{I} \implies \left(\mathbf{A}^{\dagger}\right)^{T} \mathbf{A}^{T} = \left(\mathbf{A}^{T}\right)^{\dagger} \mathbf{A}^{T} = \mathbf{I}$$
$$\mathbf{A}^{T} = \mathbf{Q}\mathbf{R} \implies \left(\mathbf{A}^{T}\right)^{\dagger} = \mathbf{R}^{-1}\mathbf{Q}^{T} = \left(\mathbf{A}^{\dagger}\right)^{T} \implies \mathbf{A}^{\dagger} = \mathbf{Q}\mathbf{R}^{-T}$$