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Multiple Random Variables

I In many experiments, it is not uncommon for us to be interested in more than one

variable related to the experiment. For example, if we were collecting data on obesity in

a population, we would measure the age, weight, height, dietary habits etc. of each

individual participant in the study.

I Thus, often our sample space of interest S is a Cartesian product of “smaller” sample

spaces S1, S2, . . . Sn: S = S1 × S2 × · · · × Sn. Our probability model will now have n

random variables, one for each Si, and our pmf/pdfs will be multi-variate functions. We

define a n-dimensional random vector as an element of Rn which can be compactly

written as the following,

x =
[
x1 x2 · · · xn

]T
∈ Rn
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Multiple Random Variables - Discrete Case

I Consider the bivariate case, z ==

[
x

y

]
. We can define the joint probability mass

function x as the following,

fx,y (x, y) = P (x = x,y = y) = P (x = x ∩ y = y)

I Probabilities of events defined on z =

[
x

y

]
can be determined through the following,

P

([
x

y

]
∈ A ⊂ R2

)
=

∑
[x,y]T∈A

fx,y (x, y)

I Joint probability distribution function of multivariate r.v. is defined as,

Fx,y (x, y) = P (x ≤ x,x ≤ y) =
∑
u≤x

∑
v≤y

fx,y (u, v)



Sivakumar Balasubramanian Linear Algebra & Random Processes/Multiple Random Variables 5/22

Multiple Random Variables - Discrete Case

Marginal Probability Mass

Functions – the pmf of the the

individual r.v.s.
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Consider a pair of dice that are thrown, and let x1 and x2 be random variables representing the

number that turns up on each of the two dice.s What will be the PMFs of the following bivariate r.vs

z = (a) [x1 + x2,x1 − x2]T ; (c) [x1 · x2,x1/x2]T .
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Multiple Random Variables - Continuous Case

I The joint pdf for the bivariate case gives us the probability of the r.v.s assuming a value

in a small interval around the point of interest.

P

(
x− δx

2
< x ≤ x+

δx

2
, y − δy

2
< y ≤ y +

δy

2

)
= fx,y (x, y) δxδy

I Probabilities of events defined on z =

[
x

y

]T
can be determined through the following,

P

([
x

y

]
∈ A ⊂ R2

)
=

∫∫
A
fx,y (x, y) dx dy

I Joint probability distribution function of multivariate r.v. is defined as,

Fx,y (x, y) = P (x ≤ x,x ≤ y) =

y∫
−∞

x∫
−∞

fx,y (u, v) du dv
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Multiple Random Variables - Continuous Case

fx1,x2 (x1, x2) =
1

2πσ1σ2
exp

(
−
(
x21
σ21

+
x2
σ22

))

fx1 =
1√

2πσ21
exp

(
−x

2
1

σ21

)

fx2 =
1√

2πσ22
exp

(
−x

2
2

σ22

)
This is an example of a

multivariate Guassian

distribution. In this case

the marginal distributions

are also Gaussian.
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Conditional Distributions and Independence
I Often, the knowledge of one r.v. in a set of r.v.s gives us some information about the other r.v.s.

I Consider a discrete bivariate r.v. z = [x, y]T , with pmf fx,y (x, y) and marginal pmfs fx (x) and

fy (y). The conditional pmf of y given that x = x is given by,

fy|x (y|x) = P (y|x) =
P (x = x,y = y)

P (x = x)
=
fx,y (x, y)

fx (x)

I We can similarly define the condition pdf of a continuous bivariate r.v. as,

fy|x (y|x) = P (y|x) =
P (x = x,y = y)

P (x = x)
=

fx,y (x, y)

fx (x)

Consider a pair of dice that are thrown, and let x1 and x2 be r.v.s representing the number on each

dice. Let z = [z1, z2]T = [x1 + x2,x1 − x2]T . What is fz2|z1
(z2|z1 = 4)?

Consider a joint pdf fx,y (x, y) = e−y, 0 < x < y <∞. What is fy|x (y|x)? fx|y (x|y) ?
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Transformation of multiple random variables

I We can extend the idea of transformation of r.v.s to the case with multiple random

variables.

I Consider the simple case of where two r.v.s x1,x2 are mapped to a single r.v. y,

y = g (x1,x2) −→ Fy (y) = P (y ≤ y) =

∫∫
x1,x2∈Dy

fx1,x2 (x1, x2) dx1 dx2

When, y = x1 + x2 and fx1,x2 (x1, x2) = fx1 (x1) fx2 (x2),

fy (y) =

∫ ∞
x1=−∞

fx1 (x1) fx2 (y − x1) dx =

∫ ∞
x2=−∞

fx2 (y − x2) fx2 (x2) dx2

For the discrete case, we have

fy (y) =

∞∑
x1=−∞

fx1 (x1) fx2 (y − x1) =

∞∑
x2=−∞

fx1 (y − x2) fx2 (x2)
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Transformation of multiple random variables

I Lets now consider a general transformation that maps multiple r.v.s to multiple r.v.s, i.e.

x =

[
x1

x2

]
to y =

[
y1

y2

]
, such that y =

[
y1

y2

]
=

[
g1 (x1,x2)

g2 (x1,x2)

]

Fy1,y2 (y1, y2) = P (y1 ≤ y1,y2 ≤ y2) =

∫∫
x1,x2∈Dy1,y2

fx1,x2 (x1, x2) dx1 dx2

I The joint density function fy1,y2 (y1, y2) is related to fx1,x2 (x1, x2) through the

Jacobian of the map from x to y.

fy1,y2 (y1, y2) =
1

|J (x1, x2)|
fx1,x2 (x1, x2)

where, J (x1, x2) =

 ∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

.
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Expected values of multi-variate random variables

I Consider a n-dimensional r.v. x =
[
x1 x2 · · · xn

]>
, and a function

y = g (x1, . . .xn). The expected value of this function is given by,

E (g (x1, . . .xn)) =

∞∫
−∞

· · ·
∞∫
−∞

g (x1, . . .xn) fx1,...xn (x1, . . .xn) dx1 . . . dxn

E.g. g (x1, . . .xn) = x1 + · · ·+ xn =⇒ E (g (x1, . . .xn)) =
∑n

i=1 E (xi)

How do we

compute E (xi)?

.

Is E (xixj) = E (xi)E (xj)?

.

What about E (Πn
i=1xi)?

.
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Expected values of multi-variate random variables
I Covariance. How do two r.v.s xi and xj co-vary? i.e. how does change in one affect

the other?

σxixj , E
(

(xi − E (xi)) (xj − E (xj))

)
= E (xixj)− E (xi)E (xj)

The size of σxixj depends on the variances of the individual random variables xi and xj .

I Positive values for σxixj indcates that positive or negative values for xi − E (xi) are

accompanied by positive or negative values deviations for xj − E (xj), respectively.

When for σxixj is negative, the signs of xi − E (xi) and xi − E (xj) are reversed.

I When xi and xj are independent. σxixj = 0. Meaning they the signs of xi − E (xi) and

xi − E (xj) sometimes match and sometimes don’t.

I Covariance can be zero even when two r.v.s are dependent. Consider a uniformly

distributed r.v. x1 between −1 and 1, and let x2 = x2
1 − 1

3 . What is σx1x2?
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Expected values of multi-variate random variables

I Correlation Coefficient. Normalized covariance and is bound by -1 and +1.

ρxixj =
σxixj

σxiσxj

−3 −2 −1 0 1 2 3

x1
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x
2
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x
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−4 −2 0 2 4

x1
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0
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4
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8
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x
4

I ρxixj is 1 or -1 when there is an affine relation between xi and xi, i.e. xi = axj + b.

ρxixj = 1 when a > 0 and ρxixj = −1 when a < 0.
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Expected values of multi-variate random variables

I Consider a n-dimensional r.v. x =
[
x1 x2 · · · xn

]>
. The mean of x is given by,

mx , E




x1

...

xn


 =


E (x1)

...

E (xn)


I The covaiance matrix of x is given by,

Σx = E
(
x>x

)
=


E
(
x2
1

)
· · · E (x1xn)

...
. . .

...

E (xnx1) · · · E
(
x2
n

)


All covariance matrices are positive semi-definite.
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Multi-variate Gaussian Distributions

I Jointly Gaussian distributions play an important role in many areas of engineering.

I A set of n r.v. x =
[
x1 x2 · · · xn

]T
are jointly Gaussian, if their pdf is of the

following form.

fx (x1, x2 . . . xn) =
1

(2π)
n
2
√
|Σx|

exp

(
− 1

2
(x−mx)T Σ−1 (x−mx)

)
The mean mx and covariance Σx matrix fully characterize the Gaussian distribution.

I Affine transformation of a multivariate Gaussian r.v. results in another Gaussian r.v.

with a different mean and covariance. Let, x ∼ N (mx,Σx), and y = Ax + b, where

A ∈ Rn×n and b ∈ Rn. Then we have,

my = Amx + b Σy = AΣxAT


