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Multiple Random Variables

» In many experiments, it is not uncommon for us to be interested in more than one
variable related to the experiment. For example, if we were collecting data on obesity in
a population, we would measure the age, weight, height, dietary habits etc. of each
individual participant in the study.

» Thus, often our sample space of interest S is a Cartesian product of “smaller” sample
spaces S1,59,...5,: § =51 X 89 x -+ x.S,. Our probability model will now have n
random variables, one for each S;, and our pmf/pdfs will be multi-variate functions. We
define a n-dimensional random vector as an element of R™ which can be compactly

written as the following,

X=[X] X9 --- X’I’L] ER”
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Multiple Random Variables - Discrete Case

X . .. -
» Consider the bivariate case, z == [ ] . We can define the joint probability mass

y
function x as the following,

fxy @y =Px=zy=y) =Px=znNy=y)

» Probabilities of events defined on z =

p<x

X] can be determined through the following,
y

GACR2>: Z fxy (z,y)

y o)A

» Joint probability distribution function of multivariate r.v. is defined as,

Fay (.y) = P(x <a,x<y) = 3.3 fy (u,0)

u<lzx vy
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Multiple Random Variables - Discrete Case

X1

. ope 1,2, X
Marginal Probability Mass Frer o (@1,22) 1 92 3 4 5 6 Fxa (w2)
H 1 1 1 1 1 1 1
Functions — the pmf of the the I |55 3%l !lx:| 3| 3% :
. .. 1 1 1 1 1 1 1
individual r.v.s. 2 |55 1313 | 36| 35| 36 5
3 1o 1011 0 10 1 1
x 36 36 36 36 36 36 6
2 4 [T 1111 1
fxy (1) E Jx1xo (T1,22) 36 | 36 | 36 | 36 | 36 | 36 6
5 L[ [ L1211 1
36 36 36 36 36 36 6
6 J S A A A O e e 1
36 36 36 36 36 36 6
fxa (z2) E fx1 % (71, 72)
1 1 1 1 1 1
fa@) [slslslslslsl [ 1
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Multiple Random Variables - Discrete Case

X1

. ope 1,2, X
Marginal Probability Mass Frer o (@1,22) 1 92 3 4 5 6 Fxa (w2)
H 1 1 1 1 1 1 1
Functions — the pmf of the the I |55 3%l !lx:| 3| 3% :
. .. 1 1 1 1 1 1 1
individual r.v.s. 2 |55 1313 | 36| 35| 36 5
3 1111 1 1 1
x 36 36 36 36 36 36 6
2 4 [T 1111 1
fxy (1) E Jx1xo (T1,22) 36 | 36 | 36 | 36 | 36 | 36 6
- S N I R R 1
36 36 36 36 36 36 6
6 1o 111 1 1 1
36 36 36 36 36 36 6
fxz $2 E fx1,X2 $17$2)
1 1 1 1 1 1
Frer (1) (s lslslslals] [ 1

Consider a pair of dice that are thrown, and let x; and x5 be random variables representing the
number that turns up on each of the two dice.s What will be the PMFs of the following bivariate r.vs

z = (a) [x1 4 x2,%1 — x2|7; (¢) [x1 - X2, %1 /x0]"
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Multiple Random Variables - Continuous Case

» The joint pdf for the bivariate case gives us the probability of the r.v.s assuming a value

in a small interval around the point of interest.

o o Y J
P(:L‘—zx<x<x—|—2x,y—2y<y<y+2y> = fxy (z,y) dxdy

» Probabilities of events defined on z =

p<x

y

T
X] can be determined through the following,
y

6ACR2> :/Afxy(x,y)dxdy

» Joint probability distribution function of multivariate r.v. is defined as,

Fyy(z,y)=P(x<z,x<y)= //fxyuvdudv

—00 —00
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Multiple Random Variables - Continuous Case

thxz ($17$2) = ——€exXp <_ (

1 x?
= ()
xl 27r0% U%

1 x2
)
* 27(0’% U%

This is an example of a

fxl-x2(7 )

multivariate Guassian
distribution. In this case
the marginal distributions

are also Gaussian.
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Conditional Distributions and Independence
» Often, the knowledge of one r.v. in a set of r.v.s gives us some information about the other r.v.s.

> Consider a discrete bivariate r.v. z = [x, y|7, with pmf fxy (z,y) and marginal pmfs fx (z) and

fy (y). The conditional pmf of y given that x = x is given by,
Px=zy=y) _fuy(@y)

fy\x (y|x) =P (y|$) = P (X = CL') N Jx (x)

» We can similarly define the condition pdf of a continuous bivariate r.v. as,

Fyie (Wl2) = P (y]2) = W _
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Conditional Distributions and Independence
» Often, the knowledge of one r.v. in a set of r.v.s gives us some information about the other r.v.s.

> Consider a discrete bivariate r.v. z = [x, y|7, with pmf fxy (z,y) and marginal pmfs fx (z) and

fy (y). The conditional pmf of y given that x = x is given by,
Px=zy=y) _fuy(@y)

fy\x (y|x) =P (y|$) = P (X = CL') N Jx (x)

» We can similarly define the condition pdf of a continuous bivariate r.v. as,

P(x=zy=y) _ fxy (2,9)
P(x=ux) fx (@)
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Conditional Distributions and Independence
» Often, the knowledge of one r.v. in a set of r.v.s gives us some information about the other r.v.s.

> Consider a discrete bivariate r.v. z = [x, y|7, with pmf fxy (z,y) and marginal pmfs fx (z) and

fy (y). The conditional pmf of y given that x = x is given by,
Px=zy=y) _fuy(@y)

fylx (y|$) =P (y|$) = P (X = J;) N Jx (:E)

» We can similarly define the condition pdf of a continuous bivariate r.v. as,

fyix (ylz) = P (ylz) = P(;Txx,:yx): Y fx}i ((’U:f)y)

Consider a pair of dice that are thrown, and let x; and x5 be r.v.s representing the number on each

dice. Let z = [z1, zo]" = [x1 + X2,%1 — X2]T. What is f,,,, (22|21 = 4)?
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Conditional Distributions and Independence
» Often, the knowledge of one r.v. in a set of r.v.s gives us some information about the other r.v.s.

> Consider a discrete bivariate r.v. z = [x, y|7, with pmf fxy (z,y) and marginal pmfs fx (z) and

fy (y). The conditional pmf of y given that x = x is given by,
Px=zy=y) fxy(®y)

fylx (y|$) =P (y|£17) = P (X = J;) N Jx ((E)

» We can similarly define the condition pdf of a continuous bivariate r.v. as,

i - - IS5

Consider a pair of dice that are thrown, and let x; and x5 be r.v.s representing the number on each
dice. Let z = [z1, 2o]T = [x1 + X2,%X; — X2]T. What is Jas)z (2221 = 4)7

Consider a joint pdf fxy (z,y) =e™¥, 0 <z <y < oo. Whatis fyx (y[2)? fx|y (z]y) ?
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Transformation of multiple random variables

» We can extend the idea of transformation of r.v.s to the case with multiple random
variables.

» Consider the simple case of where two r.v.s X1, X2 are mapped to a single r.v. y,

Yy = g(XhX?) — Fy (y) = P(y < y) = // fx1,X2 (xlaxQ) dxl d$2
T1,72€Dy

Whenv y=x1 + X2 and fxl,xz (:Clva) = fxl ($1) fx2 (-T2)y

fy () = /OO frr (21) frg (y — 1) dr = /w Fro (4 — 2) fy (2) da

1=—00 2=—00

For the discrete case, we have

2{: fxi (71) fxo (y — 2{: fx1 (Y — 72) fx, (22)

Tr1=—00 To=—00

13/22
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Transformation of multiple random variables

» Lets now consider a general transformation that maps multiple r.v.s to multiple r.v.s, i.e.
X X1,X
w= X toy = | such thaty = || = g1 (x1,X2)
X2 y2 y2 92 (x1,%2)
F)’la}’2 (ylv y2) =P (yl < Y1,Y2 < 92 / fxl X2 (xla x?) dwl de

21,22€ Dy ,yo

» The joint density function fy, v, (y1,¥2) is related to fx, x, (€1, 22) through the

Jacobian of the map from x to y.

1
fYI7y2 (ylayQ) = |J (1‘1 $2)|fx17x2 (1"17:’62)
)
991 Og1
where, J (z1,22) = 22 Zj

o1 0o



Sivakumar Balasubramanian Linear Algebra & Random Processes/Multiple Random Variables

Expected values of multi-variate random variables

.
» Consider a n-dimensional r.v. x = [xl Xg - xn} , and a function

y = ¢g(X1,...Xy). The expected value of this function is given by,

E(g(xl,...xn)):/---/g(xl,...xn)thmxn (X1,...Xp) dz1 ..

Eg g(x1,...xp) =x1+--+%x, = E(g(x1,...%,)) =>1 E(x;)

.dxy,

15/22
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Expected values of multi-variate random variables

.
» Consider a n-dimensional r.v. x = [xl Xg - xn} , and a function

y = ¢g(X1,...Xy). The expected value of this function is given by,

]E(g(xl,...xn)):/---/g(xl,...xn)thmxn (X1,...%Xp) dr1 ...dz),

Eg g(x1,...xp) =x1+ - +%x, = E(g(x1,...%x5)) =D E(x;) How do we
compute E (x;)? .
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Expected values of multi-variate random variables

.
» Consider a n-dimensional r.v. x = [xl Xg - xn} , and a function

y = ¢g(X1,...Xy). The expected value of this function is given by,

E (g (x1,.-. / / (X152 Xp) fxq,xn (X1,...%y) dzy .

.dxy,

Eg g(x1,...xp) =x1+ - +%x, = E(g(x1,...%x5)) =D E(x;) How do we

compute E (x;)? .

Is E (Xl‘Xj) =K (Xj) E (X})? .

17/22
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Expected values of multi-variate random variables

-
» Consider a n-dimensional r.v. x = [xl Xg - xn} , and a function
y = ¢g(X1,...Xy). The expected value of this function is given by,

E (g (x1,.-. / / (X152 Xp) fxq,xn (X1,...%y) dzy .

.dxy,

Eg g(x1,...xp) =x1+ - +%x, = E(g(x1,...%x5)) =D E(x;) How do we

compute E (x;)? .
Is E (Xl‘Xj) =E (Xi) E (X})7 .

What about E (IT}"_;x;)7? .

18/22
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Expected values of multi-variate random variables
» Covariance. How do two r.v.s x; and x; co-vary? i.e. how does change in one affect
the other?

ormy 2 B (5~ E ) 05 ~ E()) ) =B i) — B () B (x)
The size of Ox;x; depends on the variances of the individual random variables x; and x;.

> Positive values for ox,x; indcates that positive or negative values for x; — E (x;) are
accompanied by positive or negative values deviations for x; — [E (x;), respectively.
When for oy,x; is negative, the signs of x; — E (x;) and x; — E (x;) are reversed.

» When x; and x; are independent. ox,x, = 0. Meaning they the signs of x; — E (x;) and
x; — E (xj) sometimes match and sometimes don't.

» Covariance can be zero even when two r.v.s are dependent. Consider a uniformly

distributed r.v. x; between —1 and 1, and let x9 = x% - % What is ox,x,?
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Expected values of multi-variate random variables

» Correlation Coefficient. Normalized covariance and is bound by -1 and +1.

p _ UXin
XiXj —
Ox;0x;
3 12
) e 41 10
iﬁ °
: J 2 ; - 'ﬁ‘;
. [ S 6 o vl s
o ) < r &
0 4 4
X r-_ . x X, N &
o _ i
=3 -2 2
21 %W _a 0 <
-3 - -2 .
-3 -2 -1 0 1 2 3 -4 -2 0 2 4 -4 -2 0 2 4
X1 X1 X1

> px;x; is 1or-1 when there is an affine relation between x; and x;, i.e. x; = ax; + b.

Pxix; = 1 when a >0 and px;x; = —1 when a < 0.

20/22
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Expected values of multi-variate random variables

-
» Consider a n-dimensional r.v. x = [xl Xy v xn} . The mean of x is given by,
X1 E (x1)
my 2 E . _ .
Xp, E (xn)

» The covaiance matrix of x is given by,

( ) E (x?) E (x1xp)
X« =E x'x) = . :
E(x,x1) -+ E(x2)

All covariance matrices are positive semi-definite.
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Multi-variate Gaussian Distributions

» Jointly Gaussian distributions play an important role in many areas of engineering.

T
> Asetof nrv. x= [xl Xy - xn} are jointly Gaussian, if their pdf is of the

following form.

Felona ) = e (g - m) T2 (x-my) )

2m)3 /5. T\ 2

The mean my and covariance Xy matrix fully characterize the Gaussian distribution.

» Affine transformation of a multivariate Gaussian r.v. results in another Gaussian r.v.
with a different mean and covariance. Let, x ~ N (my, Xx), and y = Ax + b, where
A € R"™"™ and b € R™. Then we have,

my = Am, +b X, = AX, AT



