(ロ) (型) (E) (E) (E) (O)

Linear Algebra and Random Processes Orthogonality

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

References

- S Boyd, Applied Linear Algebra: Chapters 5.
- ► G Strang, Linear Algebra: Chapters 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Orthogonality

• Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are orthogonal if $\mathbf{x}^T \mathbf{y} = 0$.

- If we have a set of non-zero vectors V = {v₁, v₂, v₃, ..., v_r}, we say this a set of mutually orthogonal vectors, if and only if, v_i^Tv_j = 0, 1 ≤ i, j ≤ r and i ≠ j. V is also a linearly independent set of vectors.
- ▶ When the length of the vectors is 1, it is called an **orthonormal** set of vectors.
- ► A set of orthonormal vectors V also form an orthonormal basis of the subsapce span (V).

• Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are orthogonal if $\mathbf{x}^T \mathbf{y} = 0$.

- If we have a set of non-zero vectors V = {v₁, v₂, v₃,..., v_r}, we say this a set of mutually orthogonal vectors, if and only if, v_i^Tv_j = 0, 1 ≤ i, j ≤ r and i ≠ j. V is also a linearly independent set of vectors.
- ▶ When the length of the vectors is 1, it is called an **orthonormal** set of vectors.
- ► A set of orthonormal vectors V also form an orthonormal basis of the subsapce span (V).

Is
$$\left\{ \begin{bmatrix} 1\\-2\\4 \end{bmatrix}, \begin{bmatrix} -2\\1\\1 \end{bmatrix} \right\}$$
 an orthonormal set?. If no, how will you make it one?

Orthogonal Subspaces

Two subspaces V, W are orthogonal if every vector in one subspace is orthogonal to every vector in the other subspace.

$$\mathbf{v}^T \mathbf{w} = 0, \ \forall \mathbf{v} \in \mathcal{V} \text{ and } \forall \mathbf{w} \in \mathcal{W}$$

Both subspaces \mathcal{V}, \mathcal{W} are from the same space, e.g. \mathbb{R}^n

Consider two subspaces V, W ⊂ ℝⁿ, such that V + W = ℝⁿ. If V and W are orthogonal subspaces, then V and W are orthogonal complements of each other.

$$\mathcal{W} \perp \mathcal{V} \rightarrow \mathcal{V}^{\perp} = \mathcal{W} \text{ or } \mathcal{W}^{\perp} = \mathcal{V}; \quad \left(\mathcal{V}^{\perp}\right)^{\perp} = \mathcal{V}$$

Orthogonal Subspaces

Two subspaces V, W are orthogonal if every vector in one subspace is orthogonal to every vector in the other subspace.

$$\mathbf{v}^T \mathbf{w} = 0, \ \forall \mathbf{v} \in \mathcal{V} \text{ and } \forall \mathbf{w} \in \mathcal{W}$$

Both subspaces \mathcal{V}, \mathcal{W} are from the same space, e.g. \mathbb{R}^n

Consider two subspaces V, W ⊂ ℝⁿ, such that V + W = ℝⁿ. If V and W are orthogonal subspaces, then V and W are orthogonal complements of each other.

$$\mathcal{W} \perp \mathcal{V} \ o \ \mathcal{V}^{\perp} = \mathcal{W} ext{ or } \mathcal{W}^{\perp} = \mathcal{V}; \quad \left(\mathcal{V}^{\perp}\right)^{\perp} = \mathcal{V}$$

$$\mathcal{V} = span \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}^T, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}^T \right\} \text{ and } \mathcal{W} = span \left\{ \begin{bmatrix} 1\\-2\\1 \end{bmatrix}^T \right\}. \text{ Is } \mathcal{V}^{\perp} = \mathcal{W}? \text{ If we add } \begin{bmatrix} 1\\-1\\0 \end{bmatrix}^T \text{ to } \mathcal{W}, \text{ is } \mathcal{V}^{\perp} = \mathcal{W} \text{ still true}?$$

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Relationship between the Four Fundamental Spaces

• $\mathcal{C}(\mathbf{A}), \mathcal{N}(\mathbf{A}^T) \subseteq \mathbb{R}^m$ are orthogonal complements.

$$\mathcal{C}\left(\mathbf{A}
ight)\perp\mathcal{N}\left(\mathbf{A}^{T}
ight)$$

• $\mathcal{C}(\mathbf{A}^T), \mathcal{N}(\mathbf{A}) \subseteq \mathbb{R}^n$ are orthogonal complements.

 $\mathcal{C}\left(\mathbf{A}^{T}
ight)\perp\mathcal{N}\left(\mathbf{A}
ight)$

- $\operatorname{dim} \mathcal{C} \left(\mathbf{A} \right) + \operatorname{dim} \mathcal{N} \left(\mathbf{A}^{T} \right) = m \implies \\ \mathcal{C} \left(\mathbf{A} \right) + \mathcal{N} \left(\mathbf{A}^{T} \right) = \mathbb{R}^{m}$
- $\operatorname{dim} \mathcal{C} \left(\mathbf{A}^{T} \right) + \operatorname{dim} \mathcal{N} \left(\mathbf{A} \right) = n \implies \\ \mathcal{C} \left(\mathbf{A}^{T} \right) + \mathcal{N} \left(\mathbf{A} \right) = \mathbb{R}^{n}$

- Is C

8/28

Relationship between the Four Fundamental Spaces

 $\triangleright \mathcal{C}(\mathbf{A}), \mathcal{N}(\mathbf{A}^T) \subseteq \mathbb{R}^m$ are orthogonal complements.

$$\mathcal{C}\left(\mathbf{A}
ight) \perp \mathcal{N}\left(\mathbf{A}^{T}
ight)$$

 $\triangleright \mathcal{C}(\mathbf{A}^T), \mathcal{N}(\mathbf{A}) \subseteq \mathbb{R}^n$ are orthogonal complements.

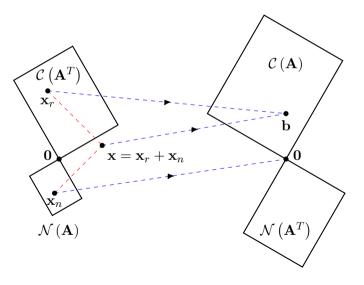
 $\mathcal{C}\left(\mathbf{A}^{T}\right) \perp \mathcal{N}\left(\mathbf{A}\right)$

- $\blacktriangleright \dim \mathcal{C} (\mathbf{A}) + \dim \mathcal{N} (\mathbf{A}^T) = m \implies$ $\mathcal{C}(\mathbf{A}) + \mathcal{N}(\mathbf{A}^T) = \mathbb{R}^m$
- $\blacktriangleright \dim \mathcal{C} \left(\mathbf{A}^T \right) + \dim \mathcal{N} \left(\mathbf{A} \right) = n \implies$ $\mathcal{C}\left(\mathbf{A}^{T}\right) + \mathcal{N}\left(\mathbf{A}\right) = \mathbb{R}^{n}$

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 & 0 & 1 \\ 2 & -4 & 1 & -1 & -2 \\ -1 & 2 & 1 & 1 & 2 \\ 2 & -4 & -2 & -2 & -4 \end{bmatrix}$$
$$\mathbf{E} = \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -3 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix}$$
$$\mathbf{R} = \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{R}_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 & 0 & 1 \\ 0 & 0 & -1 & -1 & -4 \\ 0 & 0 & 0 & -1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$- \text{ ls } \mathcal{C} (\mathbf{A}) \perp \mathcal{N} (\mathbf{A}^T) ?$$
$$- \text{ ls } \mathcal{C} (\mathbf{A}^T) \perp \mathcal{N} (\mathbf{A}) ?$$
$$- \text{ What is dim } \mathcal{C} (\mathbf{A}), \dim \mathcal{N} (\mathbf{A}^T), \dim \mathcal{C} (\mathbf{A}^T), dim \mathcal{N} (\mathbf{A}) ?$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Relationship between the Four Fundamental Spaces



- \mathbf{x}_r and \mathbf{x}_n are the components of $\mathbf{x} \in \mathbb{R}^n$ in the row space and nullspace of \mathbf{A} .
- **Nullspace** $\mathcal{N}(\mathbf{A})$ is mapped to **0**.

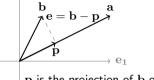
 $\mathbf{A}\mathbf{x}_n = \mathbf{0}$

Row space $C(\mathbf{A}^T)$ is mapped to the column space $C(\mathbf{A})$.

 $\mathbf{A}\mathbf{x}_r = \mathbf{A}\left(\mathbf{x}_r + \mathbf{x}_n\right) = \mathbf{A}\mathbf{x} = \mathbf{b}$

- The mapping from the row space to the column space is invertible, i.e. every x_r is mapped to a unique element in C (A)
- What sort of mapping does \mathbf{A}^T do?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00



 $\mathbf{P} = \frac{\mathbf{a}\mathbf{a}^T}{\mathbf{a}^T\mathbf{a}}$ is the projection matrix onto the line \mathbf{a} .

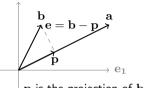
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

| **p** is the projection of **b** onto **a**.

 $\|\mathbf{e}\|$ is the distance of the point **b** from the line along **a**. This distance is shortest when, $\mathbf{e} \perp \mathbf{a}$.

$$\mathbf{a}^{T}(\mathbf{b}-\mathbf{p}) = \mathbf{a}^{T}(\mathbf{b}-\alpha\mathbf{a}) = \mathbf{a}^{T}\mathbf{b}-\alpha\mathbf{a}^{T}\mathbf{a} = 0$$

$$\alpha = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} \implies \mathbf{p} = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} \mathbf{a}$$
$$\mathbf{p} = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} \mathbf{a} = \mathbf{a} \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} = \frac{\mathbf{a} \mathbf{a}^T}{\mathbf{a}^T \mathbf{a}} \mathbf{b} = \mathbf{P} \mathbf{b}$$



 ${f p}$ is the projection of ${f b}$ onto ${f a}.$

 $\|\mathbf{e}\|$ is the distance of the point **b** from the line along **a**. This distance is shortest when, $\mathbf{e} \perp \mathbf{a}$.

$$\mathbf{a}^{T}(\mathbf{b}-\mathbf{p}) = \mathbf{a}^{T}(\mathbf{b}-\alpha\mathbf{a}) = \mathbf{a}^{T}\mathbf{b}-\alpha\mathbf{a}^{T}\mathbf{a} = 0$$

$$\alpha = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} \implies \mathbf{p} = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} \mathbf{a}$$
$$\mathbf{p} = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} \mathbf{a} = \mathbf{a} \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} = \frac{\mathbf{a} \mathbf{a}^T}{\mathbf{a}^T \mathbf{a}} \mathbf{b} = \mathbf{P} \mathbf{b}$$

 $\mathbf{P} = \frac{\mathbf{a}\mathbf{a}^T}{\mathbf{a}^T\mathbf{a}} \text{ is the projection matrix}$ onto the line $\mathbf{a}.$

Find the orthogonal projection matrix associated \mathbf{a} , and find the projection of \mathbf{b} on to $span(\{\mathbf{a}\})$.

•
$$\mathbf{a} = \begin{bmatrix} -1\\ 2 \end{bmatrix}; \mathbf{b} = \begin{bmatrix} 2\\ 2 \end{bmatrix}$$

• $\mathbf{a} = \begin{bmatrix} -1\\ 2 \end{bmatrix}; \mathbf{b} = \begin{bmatrix} 6\\ 3 \end{bmatrix}$
• $\mathbf{a} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}; \mathbf{b} = \begin{bmatrix} -2\\ -4\\ -2 \end{bmatrix}$

| ◆ □ ▶ ◆ 個 ▶ ◆ 目 ▶ ◆ 国 ▶ ● ④ ヘ () ●

Orthogonal Projection onto Subspaces

- We can also project vectors onto other subspaces, which is the generalization of the projection to a 1 dimensional subspace, i.e. the line.
- ▶ Consider a vector $\mathbf{b} \in \mathbb{R}^n$ and a subspace $S \subseteq \mathbb{R}^n$ spanned by the orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_r\}$.

 $\mathbf{b}_{\mathcal{S}}$ – the orthogonal projection of \mathbf{b} onto \mathcal{S} is given by the following,

$$\mathbf{b}_{\mathcal{S}} = \mathbf{U}\mathbf{U}^T\mathbf{b}; \ \mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_r \end{bmatrix}$$

Projection matrix $\mathbf{P}_{\mathcal{S}} = \mathbf{U}\mathbf{U}^T$

A projection matrix is **idempotent**, i.e. P² = P. What does this mean in terms of projecting a vector on to a subspace?

Orthogonal Projection onto Subspaces

- We can also project vectors onto other subspaces, which is the generalization of the projection to a 1 dimensional subspace, i.e. the line.
- ▶ Consider a vector $\mathbf{b} \in \mathbb{R}^n$ and a subspace $S \subseteq \mathbb{R}^n$ spanned by the orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r\}$.

 $\mathbf{b}_{\mathcal{S}}$ – the orthogonal projection of \mathbf{b} onto \mathcal{S} is given by the following,

$$\mathbf{b}_{\mathcal{S}} = \mathbf{U}\mathbf{U}^T\mathbf{b}; \ \mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_r \end{bmatrix}$$

Projection matrix $\mathbf{P}_{\mathcal{S}} = \mathbf{U}\mathbf{U}^T$

A projection matrix is **idempotent**, i.e. P² = P. What does this mean in terms of projecting a vector on to a subspace?

Find the orthogonal projection matrix associated $\mathcal{U} = \left\{ \begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 3 \end{bmatrix} \right\}$, and find the projection

of
$$\mathbf{b} = \begin{bmatrix} 2\\2\\3 \end{bmatrix}$$
 on to $span(\mathcal{U})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ∽へぐ

Orthogonal Projection onto Subspaces

- Consider two matrices U₁, U₂ whose columns form an orthonormal basis of the subspace S ⊆ ℝ^m, C (U₁) = C (U₂).
- ► The projection matrix onto the subspace S, U₁U₁^T = U₂U₂^T. We get the same projection matrix irrespective of which orthonormal basis one uses.

Orthogonal Projection onto Subspaces

- Consider two matrices U₁, U₂ whose columns form an orthonormal basis of the subspace S ⊆ ℝ^m, C (U₁) = C (U₂).
- ► The projection matrix onto the subspace S, U₁U₁^T = U₂U₂^T. We get the same projection matrix irrespective of which orthonormal basis one uses.

Let
$$\mathbf{U}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $\mathbf{U}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 0 \end{bmatrix}$. Find the corresponding projection matrices.

▶ Two subspaces $\mathcal{V}, \mathcal{W} \subseteq \mathcal{U}$ are said to be **complementary subspaces** of \mathcal{U} , when

 $\mathcal{V} + \mathcal{W} = \mathcal{U}$ and $\mathcal{V} \cap \mathcal{W} = \{\mathbf{0}\}$

- ▶ When two subspaces $\mathcal{V}, \mathcal{W} \subseteq \mathbb{R}^m$ are complementary, then any vector $\mathbf{x} \in \mathbb{R}^m$ can be uniquely represented as $\mathbf{x} = \mathbf{v} + \mathbf{w}$, where $\mathbf{v} \in \mathcal{V}$ and $\mathbf{w} \in \mathcal{W}$ and \mathbf{v}, \mathbf{w} are the components of \mathbf{x} in \mathcal{V} and \mathcal{W} respectively.
- When $\mathcal{V} \perp \mathcal{W}$, then $\mathbf{v}^T \mathbf{w} = 0$; \mathbf{v}, \mathbf{w} are orthogonal components.
- If P_S is the orthogonal projection matrix onto S, then what is the projection matrix onto S[⊥]?

Orthogonal Projection onto Subspaces

▶ Two subspaces $\mathcal{V}, \mathcal{W} \subseteq \mathcal{U}$ are said to be **complementary subspaces** of \mathcal{U} , when

 $\mathcal{V} + \mathcal{W} = \mathcal{U}$ and $\mathcal{V} \cap \mathcal{W} = \{\mathbf{0}\}$

- ▶ When two subspaces $\mathcal{V}, \mathcal{W} \subseteq \mathbb{R}^m$ are complementary, then any vector $\mathbf{x} \in \mathbb{R}^m$ can be uniquely represented as $\mathbf{x} = \mathbf{v} + \mathbf{w}$, where $\mathbf{v} \in \mathcal{V}$ and $\mathbf{w} \in \mathcal{W}$ and \mathbf{v}, \mathbf{w} are the components of \mathbf{x} in \mathcal{V} and \mathcal{W} respectively.
- When $\mathcal{V} \perp \mathcal{W}$, then $\mathbf{v}^T \mathbf{w} = 0$; \mathbf{v}, \mathbf{w} are orthogonal components.
- If P_S is the orthogonal projection matrix onto S, then what is the projection matrix onto S[⊥]?

Let $\mathbf{u} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$. Find out the projection matrices $\mathbf{P}_{\mathbf{u}}$ and $\mathbf{P}_{\mathbf{u}^{\perp}}$? Verify that $\mathbf{P}_{\mathbf{u}^{\perp}} = \frac{\mathbf{u}^{\perp}(\mathbf{u}^{\perp})^T}{(\mathbf{u}^{\perp})^T \mathbf{u}^{\perp}}$.

Orthogonal Projection onto Subspaces

An orthogonal projection matrix P_S onto a subspace S represents a linear mapping, P_S : ℝ^m → ℝ^m. What are the four fundamental subspaces of P_S?

 $\mathcal{C}\left(\mathbf{P}_{\mathcal{S}}\right) =$

An orthogonal projection matrix P_S onto a subspace S represents a linear mapping, P_S : ℝ^m → ℝ^m. What are the four fundamental subspaces of P_S?

 $\mathcal{C}\left(\mathbf{P}_{\mathcal{S}}\right) = \mathcal{S}; \ \mathcal{N}\left(\mathbf{P}_{\mathcal{S}}\right) =$

An orthogonal projection matrix P_S onto a subspace S represents a linear mapping, P_S : ℝ^m → ℝ^m. What are the four fundamental subspaces of P_S?

 $\mathcal{C} \left(\mathbf{P}_{\mathcal{S}} \right) = \ \mathcal{S}; \ \mathcal{N} \left(\mathbf{P}_{\mathcal{S}} \right) = \ \mathcal{S}^{\perp} \\ \mathcal{N} \left(\mathbf{P}_{\mathcal{S}}^T \right) = \mathcal{S}^{\perp}; \ \mathcal{C} \left(\mathbf{P}_{\mathcal{S}}^T \right) = \mathcal{S}$

うせん 前 ふかん キャー・モー ひょう

An orthogonal projection matrix P_S onto a subspace S represents a linear mapping, P_S : ℝ^m → ℝ^m. What are the four fundamental subspaces of P_S?

 $\mathcal{C} \left(\mathbf{P}_{\mathcal{S}} \right) = \ \mathcal{S}; \ \mathcal{N} \left(\mathbf{P}_{\mathcal{S}} \right) = \ \mathcal{S}^{\perp} \\ \mathcal{N} \left(\mathbf{P}_{\mathcal{S}}^T \right) = \mathcal{S}^{\perp}; \ \mathcal{C} \left(\mathbf{P}_{\mathcal{S}}^T \right) = \mathcal{S}$

Let $\mathbf{U} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \end{bmatrix}$. Find the orthogonal projection matrix $\mathbf{P}_{\mathbf{U}}$ onto $\mathcal{C}(\mathbf{U})$. Describe the four fundamental subspaces of $\mathbf{P}_{\mathbf{U}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

An orthogonal projection matrix P_S onto a subspace S represents a linear mapping, P_S : ℝ^m → ℝ^m. What are the four fundamental subspaces of P_S?

 $\begin{aligned} \mathcal{C}\left(\mathbf{P}_{\mathcal{S}}\right) &= \ \mathcal{S}; \ \mathcal{N}\left(\mathbf{P}_{\mathcal{S}}\right) &= \ \mathcal{S}^{\perp} \\ \mathcal{N}\left(\mathbf{P}_{\mathcal{S}}^{T}\right) &= \mathcal{S}^{\perp}; \ \mathcal{C}\left(\mathbf{P}_{\mathcal{S}}^{T}\right) &= \mathcal{S} \end{aligned}$

Let $\mathbf{U} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \end{bmatrix}$. Find the orthogonal projection matrix $\mathbf{P}_{\mathbf{U}}$ onto $\mathcal{C}(\mathbf{U})$. Describe the four fundamental subspaces of $\mathbf{P}_{\mathbf{U}}$.

Now find $\mathbf{P}_{\mathbf{U}^{\perp}}$ and describe its four fundamental subspaces.

Gram-Schmidt Orthogonalization

- Given a linearly independent set of vectors $\mathcal{B} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$, where $\mathbf{x}_i \in \mathbb{R}^m, \forall i \in \{1, 2, \dots, n\}$, how can we find a orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ for $span(\mathcal{B})$? \longrightarrow Gram-Schmidt Algorithm
- Its an iterative procedure that can also detect if a given set B is linearly dependent.

Data: $\{\mathbf{x}_i\}_{i=1}^n$ Result: Return an orthonormal basis $\{\mathbf{u}_i\}_{i=1}^n$ if the set \mathcal{B} is linearly independent, else return nothing. for i = 1, 2, ... n do $\begin{vmatrix} 1. \tilde{\mathbf{q}}_i = \mathbf{x}_i - \sum_{j=1}^{i-1} (\mathbf{u}_j^T \mathbf{x}_i) \mathbf{u}_i \longrightarrow (\text{Orthogonalization step}); \\ 2. \text{ If } \tilde{\mathbf{q}}_i = 0 \text{ then return}; \\ 3. \mathbf{u}_i = \tilde{\mathbf{q}}_i / \|\tilde{\mathbf{q}}_i\| \longrightarrow (\text{Normalization step}); \\ \text{end} \\ \text{return } \{\mathbf{u}_i\}_{i=1}^n; \end{cases}$

Gram-Schmidt Orthogonalization

The algorithm can also be conveniently represented in a matrix form.

$$\mathcal{B} = \{\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n\}$$

Let $\mathbf{U}_1 = \mathbf{0}_{m \times 1}$ and $\mathbf{U}_i = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_{i-1} \end{bmatrix} \in \mathbb{R}^{m \times (i-1)}$ $\mathbf{U}_i^T \mathbf{x}_i = \begin{bmatrix} \mathbf{u}_1^T \mathbf{x}_i \\ \mathbf{u}_2^T \mathbf{x}_i \\ \vdots \\ \mathbf{u}_{i-1}^T \mathbf{x}_i \end{bmatrix}$ and $\mathbf{U}_i \mathbf{U}_i^T \mathbf{x}_i = \sum_{j=1}^{i-1} (\mathbf{u}_j^T \mathbf{x}_i) \mathbf{u}_j$ $\mathbf{u}_i = \frac{(\mathbf{I} - \mathbf{U}_i \mathbf{U}_i^T) \mathbf{x}_i}{\|(\mathbf{I} - \mathbf{U}_i \mathbf{U}_i^T) \mathbf{x}_i\|}$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ▲□ ◆ ○∧ ⊙

${\bf QR}$ Decomposition

- ► Gram-Schmidt procedure leads us to another form of matrix decomposition **QR decomposition**.
- ▶ Given a matrix $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$, whose columns form a linearly independent set. Gramm-Schmidt algorithm produces a orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$ for $\mathcal{C}(\mathbf{A})$.

$$\mathbf{q}_{1} = \frac{\mathbf{a}_{1}}{r_{1}} \quad \text{and} \quad \mathbf{q}_{i} = \frac{\mathbf{a}_{i} - \sum_{j=1}^{i-1} (\mathbf{q}_{j}^{T} \mathbf{a}_{i}) \mathbf{q}_{j}}{r_{k}}$$
where, $r_{1} = \|\mathbf{a}_{1}\|$ and $r_{k} = \left\|\mathbf{a}_{i} - \sum_{j=1}^{i-1} (\mathbf{q}_{j}^{T} \mathbf{a}_{i}) \mathbf{q}_{j}\right\|$.
$$\mathbf{a}_{1} = r_{1}\mathbf{q}_{1} \quad \text{and} \quad \mathbf{a}_{i} = r_{i}\mathbf{q}_{i} + \sum_{j=1}^{i-1} \left(\mathbf{q}_{j}^{T} \mathbf{a}_{i}\right) \mathbf{q}_{j}$$

$$\mathbf{A} = \begin{bmatrix}\mathbf{a}_{1} \quad \mathbf{a}_{2} \dots \quad \mathbf{a}_{n}\end{bmatrix} = \begin{bmatrix}\mathbf{q}_{1} \quad \mathbf{q}_{2} \dots \quad \mathbf{q}_{n}\end{bmatrix} \begin{bmatrix} r_{1} \quad \mathbf{q}_{1}^{T} \mathbf{a}_{2} \quad \mathbf{q}_{1}^{T} \mathbf{a}_{3} \quad \dots \quad \mathbf{q}_{1}^{T} \mathbf{a}_{n} \\ 0 \quad 0 \quad r_{2} \quad \dots \quad \mathbf{q}_{2}^{T} \mathbf{a}_{n} \\ 0 \quad 0 \quad r_{2} \quad \dots \quad \mathbf{q}_{3}^{T} \mathbf{a}_{n} \\ \vdots \quad \vdots \quad \vdots \quad \ddots \quad \vdots \\ 0 \quad 0 \quad 0 \quad \dots \quad r_{n} \end{bmatrix} = \mathbf{Q}\mathbf{R}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

${\bf QR}$ Decomposition

Find the \mathbf{QR} factorization for the following, if possible.

$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 0 & 2 \\ -4 & 1 & 3 \end{bmatrix}$$
$$\mathbf{B} = \begin{bmatrix} 1 & 2 & -1 & -7 \\ 1 & 2 & 0 & -5 \\ -4 & 1 & 0 & -16 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
$$\mathbf{C} = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$

${\bf QR}$ Decomposition

$$\mathbf{A} = \mathbf{Q}\mathbf{R}; \;\; \mathbf{A}, \mathbf{Q} \in \mathbb{R}^{m imes n}, \; \mathbf{R} \in \mathbb{R}^{n imes n}$$

 \blacktriangleright The columns of ${\bf Q}$ form an orthonormal basis for ${\cal C}\left({\bf A} \right)$, and ${\bf R}$ is upper-triangular.

Similar to A = LU, A = QR can be used for used to solve Ax = b.

$$\mathbf{A}\mathbf{x} = \mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{b} \implies \mathbf{R}\mathbf{x} = \mathbf{Q}^{-1}\mathbf{b} = \mathbf{Q}^T\mathbf{b}$$

${\bf QR}$ Decomposition

$$\mathbf{A} = \mathbf{Q}\mathbf{R}; \;\; \mathbf{A}, \mathbf{Q} \in \mathbb{R}^{m imes n}, \; \mathbf{R} \in \mathbb{R}^{n imes n}$$

The columns of **Q** form an orthonormal basis for $C(\mathbf{A})$, and **R** is upper-triangular. Similar to $\mathbf{A} = \mathbf{L}\mathbf{H}$. $\mathbf{A} = \mathbf{O}\mathbf{R}$ can be used for used to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Similar to
$$A = LU$$
, $A = QR$ can be used for used to solve $Ax = b$.

$$\mathbf{A}\mathbf{x} = \mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{b} \implies \mathbf{R}\mathbf{x} = \mathbf{Q}^{-1}\mathbf{b} = \mathbf{Q}^T\mathbf{b}$$

Solve the following through $\mathbf{L}\mathbf{U}$ and $\mathbf{Q}\mathbf{R}$ factorization.

$$\mathbf{Ax} = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 0 & 2 \\ -4 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \\ -2 \end{bmatrix} = \mathbf{b}$$

▲□▶▲圖▶★≧▶★≧▶ ≧ の�?