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Orthogonality

I Two vectors x,y ∈ Rn are orthognal if xTy = 0.

x

y

I If we have a set of non-zero vectors V = {v1,v2,v3, . . . ,vr}, we say this a set of
mutually orthogonal vectors, if and only if, vT

i vj = 0, 1 ≤ i, j ≤ r and i 6= j.
V is also a linearly independent set of vectors.

I When the length of the vectors is 1, it is called an orthonormal set of vectors.

I A set of orthonormal vectors V also form an orthonormal basis of the subsapce
span (V).

Is


 1
−2
4

 ,
−21

1

 an orthonormal set?. If no, how will you make it one?
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Orthogonal Subspaces

I Two subspaces V,W are orthogonal if every vector in one subspace is orthogonal
to every vector in the other subspace.

vTw = 0, ∀v ∈ V and ∀w ∈ W

Both subspaces V,W are from the same space, e.g. Rn

I Consider two subspaces V,W ⊂ Rn, such that V +W = Rn. If V and W are
orthogonal subspaces, then V and W are orthogonal complements of each
other.

W ⊥ V → V⊥ =W or W⊥ = V;
(
V⊥
)⊥

= V

V = span


11
1

T

,

 1
0
−1

T
 and W = span


 1
−2
1

T
. Is V⊥ =W? If we add

 1
−1
0

T

to

W, is V⊥ =W still true?
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Relationship between the Four Fundamental Spaces

I C (A) ,N
(
AT
)
⊆ Rm are orthogonal

complements.

C (A) ⊥ N
(
AT
)

I C
(
AT
)
,N (A) ⊆ Rn are orthogonal

complements.

C
(
AT
)
⊥ N (A)

I dim C (A) + dimN
(
AT
)
= m =⇒

C (A) +N
(
AT
)
= Rm

I dim C
(
AT
)
+ dimN (A) = n =⇒

C
(
AT
)
+N (A) = Rn

A =


1 −2 1 0 1
2 −4 1 −1 −2
−1 2 1 1 2
2 −4 −2 −2 −4



E =

[
E1

E2

]
=


1 0 0 0
−2 1 0 0
−3 2 1 0
0 0 2 1



R =

[
R1

R2

]
=


1 −2 1 0 1
0 0 −1 −1 −4
0 0 0 −1 −5
0 0 0 0 0


- Is C (A) ⊥ N

(
AT
)
?

- Is C
(
AT
)
⊥ N (A)?

- What is dim C (A), dimN
(
AT
)
, dim C

(
AT
)
,

dimN (A)?
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Relationship between the Four Fundamental Spaces

0

C
(
AT
)

N (A)

0

C (A)

N
(
AT
)

xr

xn

x = xr + xn

b

I xr and xn are the components of
x ∈ Rn in the row space and
nullspace of A.

I Nullspace N (A) is mapped to 0.

Axn = 0

I Row space C
(
AT
)
is mapped to

the column space C (A).

Axr = A (xr + xn) = Ax = b

I The mapping from the row space
to the column space is invertible,
i.e. every xr is mapped to a unique
element in C (A)

I What sort of mapping does AT do?
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Orthogonal Projection onto Subspaces

e1

e2

ab

p

e = b− p

p is the projection of b onto a.

‖e‖ is the distance of the point b from the line
along a. This distance is shortest when, e ⊥ a.

aT (b− p) = aT (b− αa) = aTb− αaTa = 0

α =
aTb

aTa
=⇒ p =

aTb

aTa
a

p =
aTb

aTa
a = a

aTb

aTa
=

aaT

aTa
b = Pb

P = aaT

aT a
is the projection matrix

onto the line a.

Find the orthogonal projection matrix
associated a, and find the projection
of b on to span ({a}).

• a =

[
−1
2

]
; b =

[
2
2

]
• a =

[
−1
2

]
; b =

[
6
3

]

• a =

12
1

; b =

−2−4
−2


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Orthogonal Projection onto Subspaces

I We can also project vectors onto other subspaces, which is the generalization of the
projection to a 1 dimensional subspace, i.e. the line.

I Consider a vector b ∈ Rn and a subspace S ⊆ Rn spanned by the orthonormal basis
{u1,u2, . . .ur}.
bS – the orthogonal projection of b onto S is given by the following,

bS = UUTb; U =
[
u1 u2 . . . ur

]
Projection matrix PS = UUT

I A projection matrix is idempotent, i.e. P2 = P. What does this mean in terms of
projecting a vector on to a subspace?

Find the orthogonal projection matrix associated U =


−1−1

1

 ,
21
3

, and find the projection

of b =

22
3

 on to span (U).
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Orthogonal Projection onto Subspaces

I Consider two matrices U1,U2 whose columns form an orthonormal basis of the
subspace S ⊆ Rm, C (U1) = C (U2).

I The projection matrix onto the subspace S, U1U
T
1 = U2U

T
2 . We get the same

projection matrix irrespective of which orthonormal basis one uses.

Let U1 =

1 0
0 1
0 0

 and U1 =
1√
2

1 1
1 −1
0 0

. Find the corresponding projection

matrices.
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Orthogonal Projection onto Subspaces

I Two subspaces V,W ⊆ U are said to be complementary subspaces of U , when

V +W = U and V ∩W = {0}

I When two subspaces V,W ⊆ Rm are complementary, then any vector x ∈ Rm

can be uniquely represented as x = v+w, where v ∈ V and w ∈ W and v,w are
the components of x in V and W respectively.

I When V ⊥ W, then vTw = 0; v,w are orthogonal components.

I If PS is the orthogonal projection matrix onto S, then what is the projection
matrix onto S⊥?

Let u =
[
1 1

]T
. Find out the projection matrices Pu and Pu⊥? Verify that

Pu⊥ =
u⊥(u⊥)

T

(u⊥)
T
u⊥

.



Sivakumar Balasubramanian Linear Algebra and Random Processes/Orthogonality 17/28

Orthogonal Projection onto Subspaces

I Two subspaces V,W ⊆ U are said to be complementary subspaces of U , when

V +W = U and V ∩W = {0}

I When two subspaces V,W ⊆ Rm are complementary, then any vector x ∈ Rm

can be uniquely represented as x = v+w, where v ∈ V and w ∈ W and v,w are
the components of x in V and W respectively.

I When V ⊥ W, then vTw = 0; v,w are orthogonal components.

I If PS is the orthogonal projection matrix onto S, then what is the projection
matrix onto S⊥?

Let u =
[
1 1

]T
. Find out the projection matrices Pu and Pu⊥? Verify that

Pu⊥ =
u⊥(u⊥)

T

(u⊥)
T
u⊥

.



Sivakumar Balasubramanian Linear Algebra and Random Processes/Orthogonality 18/28

Orthogonal Projection onto Subspaces

I An orthogonal projection matrix PS onto a subspace S represents a linear
mapping, PS : Rm → Rm. What are the four fundamental subspaces of PS?

C (PS) =

S; N (PS) = S⊥

N
(
PT
S
)
= S⊥; C

(
PT
S
)
= S

Let U =


1√
3

1√
6

1√
3

1√
6

1√
3
−2√
6

. Find the orthogonal projection matrix PU onto C (U). Describe

the four fundamental subspaces of PU.

Now find PU⊥ and describe its four fundamental subspaces.
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Gram-Schmidt Orthogonalization
I Given a linearly independent set of vectors B = {x1,x2, . . .xn}, where

xi ∈ Rm, ∀i ∈ {1, 2, . . . n}, how can we find a orthonormal basis {u1,u2, . . .un}
for span (B)? −→ Gram-Schmidt Algorithm

I Its an iterative procedure that can also detect if a given set B is linearly
dependent.

Data: {xi}ni=1

Result: Return an orthonormal basis {ui}ni=1 if the set B is linearly
independent, else return nothing.

for i = 1, 2, . . . n do

1. q̃i = xi −
∑i−1

j=1

(
uT
j xi

)
ui −→(Orthogonalization step);

2. If q̃i = 0 then return;
3. ui = q̃i/ ‖q̃i‖ −→(Normalization step);

end
return {ui}ni=1;
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Gram-Schmidt Orthogonalization

I The algorithm can also be conveniently represented in a matrix form.

B = {a1,a2, . . .an}

Let U1 = 0m×1 and Ui =
[
u1 u2 . . . ui−1

]
∈ Rm×(i−1)

UT
i xi =


uT
1 xi

uT
2 xi
...

uT
i−1xi

 and UiU
T
i xi =

i−1∑
j=1

(
uT
j xi

)
uj

ui =

(
I−UiU

T
i

)
xi∥∥(I−UiUT

i

)
xi

∥∥
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QR Decomposition
I Gram-Schmidt procedure leads us to another form of matrix decomposition – QR decomposition.

I Given a matrix A =
[
a1 a2 . . . an

]
∈ Rn×n, whose columns form a linearly independent set.

Gramm-Schmidt algorithm produces a orthonormal basis {q1,q2, . . .qn} for C (A).

q1 =
a1

r1
and qi =

ai −
∑i−1

j=1(q
T
j ai)qj

rk

where, r1 = ‖a1‖ and rk =
∥∥∥ai −

∑i−1
j=1(q

T
j ai)qj

∥∥∥.
a1 = r1q1 and ai = riqi +

i−1∑
j=1

(
qT
j ai

)
qj

A =
[
a1 a2 . . . an

]
=
[
q1 q2 . . . qn

]

r1 qT

1 a2 qT
1 a3 . . . qT

1 an

0 r2 qT
2 a3 . . . qT

2 an

0 0 r2 . . . qT
3 an

...
...

...
. . .

...
0 0 0 . . . rn

 = QR
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QR Decomposition
Find the QR factorization for the following, if possible.

A =

−1 2 1
0 0 2
−4 1 3



B =


1 2 −1 −7
1 2 0 −5
−4 1 0 −16
1 1 1 1



C =


0 2 −1
1 3 −1
−1 1 0
1 1 1
2 1 0


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QR Decomposition

A = QR; A,Q ∈ Rm×n, R ∈ Rn×n

I The columns of Q form an orthonormal basis for C (A), and R is upper-triangular.

I Similar to A = LU, A = QR can be used for used to solve Ax = b.

Ax = QRx = b =⇒ Rx = Q−1b = QTb

Solve the following through LU and QR factorization.

Ax =

−1 2 1
0 0 2
−4 1 3

x1x2
x3

 =

−1−2
−2

 = b
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