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Random Variables

» A random variable (r.v.) is a real values function mapping the outcomes of a random
experiment to a real number. Consider an experiment with sample space S, x (o) : S — R;
where, x is a random variable mapping S to a set of real numbers. The value of the random
variable x for a specfic outcome of the sample space w € S'is, x = x (w).

» |n some cases a r.v. can be a simple numerical relabling of the orignal space, and in most cases

they will act as some form of summary variable of the original sample space.

» The use of numerical values allows us to use standard tools of analysis to manipulate these

variables for the purposes of understanding the nature of the random experiment.

1, w=H

» In a coin toss with sample space S = {H, T}, we could have a r.v. x (w) = .
0, w=T

» |f we toos 100 coins, then a r.v. could be the number of heads in the 100 tosses. What is the

sample space represented by of this random variable?s
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Randon Variables
» Our original experiment had a sample space S and a probability assignment function
P(e):S—[0,1].
» When we define a r.v. x: .S — R for this experiment we have a new sample space Sx
and a probability function Px (e) : R +— [0, 1]; both can be derived from S and P (e).

» Let S ={01,02,...0,}, and P (0;) = p;. Let Sx = {z1,22,... 2y}, where z; € R.
Py (z;) = P ({0 |Voj € S and x (0;) = z;})

» We toss three coins and observe what turns on the three coins.
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Randon Variables
» Our original experiment had a sample space S and a probability assignment function
P(e):S—[0,1].
» When we define a r.v. x: .S — R for this experiment we have a new sample space Sx

and a probability function Px (e) : R +— [0, 1]; both can be derived from S and P (e).

» Let S ={01,02,...0,}, and P (0;) = p;. Let Sx = {z1,22,... 2}, where z; € R.
Py (z;) = P ({0 |Voj € S and x (0;) = z;})

» We toss three coins and observe what turns on the three coins.

1. What is the sample space S7



Sivakumar Balasubramanian Linear Algebra & Random Processes/Random Variables and Probability Distributions 6/43

Randon Variables
» Our original experiment had a sample space S and a probability assignment function
P(e):S—[0,1].
» When we define a r.v. x: .S — R for this experiment we have a new sample space Sx

and a probability function Px (e) : R +— [0, 1]; both can be derived from S and P (e).

» Let S ={01,02,...0,}, and P (0;) = p;. Let Sx = {z1,22,... 2}, where z; € R.
Py (z;) = P ({0 |Voj € S and x (0;) = z;})

» We toss three coins and observe what turns on the three coins.

1. What is the sample space S7
2. x =#H — #T. What is 547
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Randon Variables
» Our original experiment had a sample space S and a probability assignment function
P(e):S—[0,1].
» When we define a r.v. x: .S — R for this experiment we have a new sample space Sx

and a probability function Px (e) : R +— [0, 1]; both can be derived from S and P (e).

» Let S ={01,02,...0,}, and P (0;) = p;. Let Sx = {z1,22,... 2}, where z; € R.
Py (z;) = P ({0 |Voj € S and x (0;) = z;})

» We toss three coins and observe what turns on the three coins.
1. What is the sample space S7
2. x = #H — #T. What is Sy?
3. Prob. of H for each coin: p. What are P (o) and Px (e)?
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Random Variables

» We define events in terms of r.v.s, and determine their probability from S and P (e).

» We can condition a r.v. on an event or another r.v.

» The notion of independence can also be defined for an r.v. with respect to another r.v.

or an event.
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Random Variables

» We define events in terms of r.v.s, and determine their probability from S and P (e).
E.g. We toss three counts and define x = #H — #T. What is Px (z < 2)?
Pi(-1<z2<1)?

» We can condition a r.v. on an event or another r.v.

» The notion of independence can also be defined for an r.v. with respect to another r.v.

or an event.
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Random Variables

» We define events in terms of r.v.s, and determine their probability from S and P (e).
E.g. We toss three counts and define x = #H — #T. What is Px (x < 2)?
Pi(—-1<x<1)?

» We can condition a r.v. on an event or another r.v.

E.g. We toss three counts and define x = #H — #7T and y = max {#H, #T}. What is
Py (8)? What is Py, (z]y = 2)?
» The notion of independence can also be defined for an r.v. with respect to another r.v.

or an event.
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Random Variables

» We define events in terms of r.v.s, and determine their probability from S and P (e).
E.g. We toss three counts and define x = #H — #T. What is Px (z < 2)?
Pi(-1<z2<1)?

» We can condition a r.v. on an event or another r.v.

E.g. We toss three counts and define x = #H — #7T and y = max {#H, #T}. What is
Py (8)? What is Pyjy (z|y = 2)?

» The notion of independence can also be defined for an r.v. with respect to another r.v.
or an event.

E.g. We toss three counts and define x = sign (#H — #7T), y = max {#H,#7T}, and
z = #H. What is P, (e)? What is Py, (|y = 2)? What is Py, (z[z = 2)7?



Sivakumar Balasubramanian Linear Algebra & Random Processes/Random Variables and Probability Distributions 12/43

Probability Mass Function (PMF)

> Two types of r.v.s: Discrete and Continuous.
» Discrete: Finite or countably infinite sample space.
» Continuous: Uncountably infinite sample space.
» Probabilities associated with a discrete r.v. are fully characterized by the probability
mass function (PMF). Consider a r.v. x. Let fx by the PMF associated with x assigns

probabilities to each element of Sx.

fx (@) =P (x=x), v € S
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Probability Mass Function (PMF)

> Two types of r.v.s: Discrete and Continuous.

» Discrete: Finite or countably infinite sample space.

» Continuous: Uncountably infinite sample space.
» Probabilities associated with a discrete r.v. are fully characterized by the probability
mass function (PMF). Consider a r.v. x. Let fx by the PMF associated with x assigns

probabilities to each element of Sx.

fx (@) =P (x=x), v € S

An urn contains 3 black balls, 4 white balls, and 5 red balls. We randomly select three
balls from the urn with replacement, and count the number of red balls sampled x.

What is px (2)?
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Cummulative Distribution Function
» Cummulative distribution function (CDF) of x.

Fe(n)=Pc(x<z)= > fx(y)

y<z
YyESx
1 (1\*
Consider a PMF fy () = 2(2) @20 r €L
X - s .
0 z <0
Prob. Mass Func. fy(x) Cumm. Dist. Func. Fx(x)
1.00 1.00
0.75 0.75
< 050 5;050
[t W
0.25 I 0.25
0.00 le... 0.00
-50 -25 0.0 25 50 7.5 100 125 150 -50 -25 00 25 50 7.5 100 125 15.0

X X
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Bionimal Distribution

Bernoulli trials: Independent repeated trials with
only two possible outcomes (success or failure),
with fixed probabilities.

In n Bernoulli trials we are interested in the
number of successes irrespective of their ordering.
The number of successes x is the Binomial

random variable.

Sample space of x: Sy =

fx (x) =b(z;n,p) =
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Bionimal Distribution

Bernoulli trials: Independent repeated trials with
only two possible outcomes (success or failure),
with fixed probabilities.

In n Bernoulli trials we are interested in the
number of successes irrespective of their ordering.
The number of successes x is the Binomial

random variable.

Sample space of x: Sy = {0,1,2,...n}

fx (x) =b(z;n,p) =
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Bionimal Distribution

Bernoulli trials: Independent repeated trials with
only two possible outcomes (success or failure),
with fixed probabilities.

In n Bernoulli trials we are interested in the
number of successes irrespective of their ordering.
The number of successes x is the Binomial

random variable.

Sample space of x: Sy = {0,1,2,...n}

v

fx (JC) =b (x; ’/l,p) = <”>[)Jl(j(”"v)
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Bionimal Distribution

Bernoulli trials: Independent repeated trials with 03
only two possible outcomes (success or failure),
with fixed probabilities. =%
In n Bernoulli trials we are interested in the :xo,l
number of successes irrespective of their ordering.
The number of successes x is the Binomial -
random variable.
Sample space of x: Sx = {0,1,2,...n} 015
S 0.10
fx (@) = b(x;n,p) = <7:>p"'q(”“') x
0.00
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Bionomial distribution p =0.1

4 6 8 10 12 14 16 18 20
X

Bionomial distribution p =0.5

L

4 6 8 10 12 14 16 18 20
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Geometric Distribution

Here again, we are dealing with Bernoulli trails,
but instead of the number of successes, we are
interested in the number of trials x required to
obtain the first success.

We assume the probability of success on any trial

is p.

Sample space of x: Sy =

fx(z) =
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Geometric Distribution

Here again, we are dealing with Bernoulli trails,
but instead of the number of successes, we are
interested in the number of trials x required to
obtain the first success.

We assume the probability of success on any trial

is p.

Sample space of x: Sy = {1,2.3,...}

fx(z) =
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Geometric Distribution

Here again, we are dealing with Bernoulli trails,
but instead of the number of successes, we are
interested in the number of trials x required to
obtain the first success.

We assume the probability of success on any trial

is p.

Sample space of x: Sx = {1,2,3,...}
fe(@)=p-(1-p Y

We can generalize this to r successes, which leads

gives us the Negative Bionomial Distribution.
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Geometric Distribution

Here again, we are dealing with Bernoulli trails,
but instead of the number of successes, we are
interested in the number of trials x required to
obtain the first success.

We assume the probability of success on any trial
is p.

Sample space of x: Sy = {1,2.3,...}
fe(@)=p-(1-p Y

We can generalize this to r successes, which leads

gives us the Negative Bionomial Distribution.

0.10
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X 0.04
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Geometric distribution p=0.1
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1 6 11 16 21 26 31 36 41
X
Geometric distribution p =0.5
ITTQ-.A
1 6 11 16 21 26 31 36 41

X
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Poisson Distribution

We also often interested in the number of occurances
of an event in a given interval of time or space. This
count is a Poisson r.v., generated by a process with

the following properties,

1. Only one event can occur at a time or location;

simultaneous event are not allowed.

2. Occurrence of an event in a given period is
independent occurrences in other

non-overlapping periods.

3. The average number of occurrences A in a unit

period does not change with time or space.

Sample space of x: Sx =
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Poisson Distribution

We also often interested in the number of occurances
of an event in a given interval of time or space. This
count is a Poisson r.v., generated by a process with

the following properties,

1. Only one event can occur at a time or location;

simultaneous event are not allowed.

2. Occurrence of an event in a given period is
independent occurrences in other

non-overlapping periods.

3. The average number of occurrences A in a unit

period does not change with time or space.

Sample space of x: Sx = {0,1,2,3,...}
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Poisson Distribution

We also often interested in the number of occurances
of an event in a given interval of time or space. This
count is a Poisson r.v., generated by a process with

the following properties,

1. Only one event can occur at a time or location;

simultaneous event are not allowed.

2. Occurrence of an event in a given period is
independent occurrences in other

non-overlapping periods.

3. The average number of occurrences A in a unit

period does not change with time or space.

Sample space of x: Sx = {0,1,2,3,...}

()
fx(z;t) = e e
where, t is the fixed duration of interest, and \
is the average number of occurrences in a unit

time window. ) o
Poisson distribution A =1.5

0.3
oz
WX
01 N
00 l..
0 5 10 15 20 25
X
Poisson distribution A =10
0.125
0.100
< 0.075
$%0.050
0.025 [ [
0.000 ol T Teen
0 5 10 15 20 25
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Continuous Random Variables

> We often encounter uncountable sample spaces, and we can associate these samples
spaces with random variables that assume values in a continuous interval. E.g. Time
taken to complete a task, blood glucose concentration, wait time for a doctor's

appointment etc.

» Although in practice we only work with number of finite precision, working with a

continuous random variable often simplifies analysis through the use of calculus.

» Consider a uncountably infinite sample space S, and a associated r.v. that maps to the
entire real line R, i.e. x(o): S5 +— R.

» In this case, probabilities of events of .S cannot be determined from probabilities to the

elementary events.
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Continuous Random Variables

» A simple way to assign probability to events in S is to start with events of the form x < z.
Probabilities of all other events of interest can be obtained from these probabilities P (x < z).

» We obtain the probability distribution function of a r.v. x by assinging probabilities to these

events, A
Fe(x)=P(x<z), z€(—00,00)

» The continuous analogue of the PMF in the discrete r.v. case is the probability density function
(PDF) of the r.v. x,

d

fx () & £Fx (z) = Fx(x)= /j fx (D) dl

» For small values of 0z, fx (xo) 0z is the probability x assuming values between xy and z¢ + dz.

P(zg <x<x9+0x) = fx (20) 02
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Properties of the prob. distribution function
Properties of the prob. distribution
» Prob. distribution functions of discrete  function
r.v.s have step discontinuities, while > Fy (—00) = 0 and Fx (00

that of continuous r.v.s are continuous.
> If 21 < x9, then Fx (z1) < Fx (z2).

» Discrete r.v.s can be represented using
. . . >P(X>.%'):1—Fx($)
a prob. density function with impulse
P(z1 <x <x9) = Fx (v2) — Fx (21)
with the step discontinuities in the P(x=x)=Fx(z)— Fx(z7)
P

x1 < x < x9) = Fx (x2) — Fx (xl_)

functions. This would be consistent

prob. distribution function.
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Uniform Distribution

» This is encoutnered when sampling from a continuous region with all points in the
region being equally likely.

L 0 r<a
. _ b—a aSJESb . — r—a
fx(m,a,b)— ) Fx(a;,a,b)— b—a a§x§b
0 Otherwise

1 T >b
Prob. Density Func. fx(x) Prob. Dist. Func. Fy(x)
0.5 1.00
0.4
0.75
<03 vy
X 3% 0.50
WX0.2 uw
0.25
0.1
0.0 0.00
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
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Gaussian Distribution
» Most common distribution encountered in probability and statitics.
» Central limit theorem states that the sum a large number of independent random

variables tends to a Gaussian.

1 _(z-p)?

fX (37§N70'2) = We 202 :N(IU’,O'Z), Fx (fIf,a7b) = \/21-[_7/ e 202 du

Prob. Density Func. fx(x) Prob. Dist. Func. Fx(x)
0.8 —— u=1.0,02=0.25 1.00{ — u=1.0,02=0.25 ———
06 —— u=25,02=4.00 —— u=25,02=4.00 pd
. /

04 7
WX

0.2 -

0.0 =

-6 -4 -2 0 2 4 6 8 10 -6 -4 -2 0 2 4 6 8 10
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Exponential Distribution

» This is encountered when dealing with problems of waiting times between events, where

the occurance of an event in two non-overlapping time windows is independent.

0 z <0 0 z <0
fx(z;A) = R , Fx(x;\) = R
e x>0 l—e™™ >0
Prob. Density Func. fx(x) Prob. Dist. Func. Fx(x)
4 — A=1.0 1.00
A=4.0
3 | 0.75
3:12 ~>-<;<o.50
Wz W
1 0.25
— A=1.0
0 0.00+——— — A=40
-2 0 2 4 6 8 10 -2 0 2 4 6 8 10
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Conditional Probability Distributions and Densities

We can extend the idea of conditional probability can be extended to probability
distributions. Consider a random variable x, and some event A that has occured. We can

determine the conditional probability distribution as the following,
A P(x<
Fe(z|A) 2 P(x<z|Ad) = ———, P(A)=0

where, P (x < x, A) is the probability of the intersection of the events x < z and A.
We can similarly define the conditional probability density function,

a dFy ()

P(x<uz A
i (] ) & = Poe=nd)

pP(4)

=P(x<z|d) = P(A) =0
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Conditional Probability Distributions and Densities

Prob. Density Function

Prob. Dist. Function

0.20
0.15
0.10
0.05
0.001
-50 -25 00 25 50 75 100 125 15.0

X
05 Conditional Prob. Density Func.
o f(X) 1.00
' fx(x|A) 0.75
0.3 =

3—20.50

0.2 W
o1 0.25
0,01 0.001
-50 -25 00 25 50 75 100 125 15.0

X

— Fx(x)

-5.0

-50 -25 00 25 50 7.5 10.0 125 150
X
Conditional Prob. Dist. Function
Fx(x)
T Fx(XlA)
-25 00 25 50 7.5 100 125 15.0
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Total Probability Theorem

» Total Probability theorem:
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Total Probability Theorem

» Total Probability theorem:
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Total Probability Theorem

» Total Probability theorem:

» If B is the event x < z, then we have,

Fe(x) =) Fe(z|A4)P(A) and  fx(2) =) fx(2|A;) P (A))
i=1 ]
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Total Probability Theorem

> Total Probability theorem:

P(B) =) P(B|A)P(A)
=1
» If B is the event x < z, then we have,
Fe(x) =) Fy(z|A4) P(A) and  fx(2) =) fu (2]45) P (4))
=1 =1

A random binary signal x € {0, 1} is transmitted through a additive Gaussian noisy channel whose noise
properties depend on the voltage being transmitted (P (x = 1) = p). The received signal amplitude at each
N(O,Uf) , =0V

ppint in time is a random varible r, ‘
./\/(1,(75), rx=1V

. Find the expression for f; ().
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Baye's Theorem

P> Baye's theorem:
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Baye's Theorem

» Baye's theorem: P(A|B) = P (B|4) igg;
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Baye's Theorem
> Baye's theorem: (A)

P (A|B) = P (B|A) 1133)

> If B is the event 1 < x < x5, then we have,

Fx (22| 4) - Fx(21]4)
B (w2) = Fx (21)

P(Alx; <x<x9) = P(A)

40/43
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Baye's Theorem
> Baye's theorem: (A)

P (A|B) = P (B|A) 1133)

> If B is the event 1 < x < x5, then we have,

Fx (22| 4) - Fx(21]4)
B (w2) = Fx (21)

P(Alx; <x<x9) = P(A)

» Can we find out P (A|x = z)?
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Baye's Theorem

> Baye's theorem:

_ P(A)
P(AIB) = P (BIA) 5 55
> If B is the event 1 < x < x5, then we have,
Fy (22| A) Fy (wl | 4)
PAlzg1<x<z P(A

» Can we find out P (A|x = z)?

P(Alx=1z)= hm P(A\x<x<x—|—Ax) f’ff(x(h;l)P(A)
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Baye's Theorem
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=7
—?
=7

Prob. Mass Function

Cond. Prob. Density Functions

1.0

0.8

0.6

—r fx)

1.2

1.0

0.8

0.6

0.4

0.2

0.01

fe(r|x=0)
fe(r|x=1)
Fe(r|x=0)
Fe(r|x=1)

.0
Prob. Density Function

-1.5 =10 =05 0.0 0.5 1.0 1.5 2.0
r
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0.4
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fe(r| x = 0)fy(x = 0)
fe(r|x=1)fx(x=1)
— f(n)
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