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Random Variables
I A random variable (r.v.) is a real values function mapping the outcomes of a random

experiment to a real number. Consider an experiment with sample space S, x (•) : S 7→ R;

where, x is a random variable mapping S to a set of real numbers. The value of the random

variable x for a specfic outcome of the sample space ω ∈ S is, x = x (ω).

I In some cases a r.v. can be a simple numerical relabling of the orignal space, and in most cases

they will act as some form of summary variable of the original sample space.

I The use of numerical values allows us to use standard tools of analysis to manipulate these

variables for the purposes of understanding the nature of the random experiment.

I In a coin toss with sample space S = {H,T}, we could have a r.v. x (ω) =

1, ω = H

0, ω = T
.

I If we toos 100 coins, then a r.v. could be the number of heads in the 100 tosses. What is the

sample space represented by of this random variable?s
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Randon Variables
I Our original experiment had a sample space S and a probability assignment function

P (•) : S 7→ [0, 1].

I When we define a r.v. x : S 7→ R for this experiment we have a new sample space Sx

and a probability function Px (•) : R 7→ [0, 1]; both can be derived from S and P (•).

I Let S = {o1, o2, . . . on}, and P (oi) = pi. Let Sx = {x1, x2, . . . xm}, where xi ∈ R.

Px (xi) = P ({oj | ∀oj ∈ S and x (oj) = xi})

I We toss three coins and observe what turns on the three coins.

1. What is the sample space S?

2. x = #H −#T . What is Sx?

3. Prob. of H for each coin: p. What are P (•) and Px (•)?
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Random Variables

I We define events in terms of r.v.s, and determine their probability from S and P (•).

E.g. We toss three counts and define x = #H −#T . What is Px (x < 2)?

Px (−1 ≤ x ≤ 1)?

I We can condition a r.v. on an event or another r.v.

E.g. We toss three counts and define x = #H −#T and y = max {#H,#T}. What is

Py (•)? What is Px|y (x|y = 2)?

I The notion of independence can also be defined for an r.v. with respect to another r.v.

or an event.

E.g. We toss three counts and define x = sign (#H −#T ), y = max {#H,#T}, and

z = #H. What is Pz (•)? What is Px|y (x|y = 2)? What is Px|z (x|z = 2)?
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Probability Mass Function (PMF)

I Two types of r.v.s: Discrete and Continuous.

I Discrete: Finite or countably infinite sample space.

I Continuous: Uncountably infinite sample space.

I Probabilities associated with a discrete r.v. are fully characterized by the probability

mass function (PMF). Consider a r.v. x. Let fx by the PMF associated with x assigns

probabilities to each element of Sx.

fx (x) = Px (x = x) , x ∈ Sx

An urn contains 3 black balls, 4 white balls, and 5 red balls. We randomly select three

balls from the urn with replacement, and count the number of red balls sampled x.

What is px (x)?
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Cummulative Distribution Function

I Cummulative distribution function (CDF) of x.

Fx (x) = Px (x ≤ x) =
∑
y≤x
y∈Sx

fx (y)

Consider a PMF fx (x) =

1
2

(
1
2

)x
x ≥ 0

0 x < 0
, x ∈ Z.
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Bionimal Distribution

Bernoulli trials: Independent repeated trials with

only two possible outcomes (success or failure),

with fixed probabilities.

In n Bernoulli trials we are interested in the

number of successes irrespective of their ordering.

The number of successes x is the Binomial

random variable.

Sample space of x: Sx =

{0, 1, 2, . . . n}

fx (x) = b (x;n, p) =

(
n

k

)
pxq(n−x)
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Geometric Distribution

Here again, we are dealing with Bernoulli trails,

but instead of the number of successes, we are

interested in the number of trials x required to

obtain the first success.

We assume the probability of success on any trial

is p.

Sample space of x: Sx =

{1, 2, 3, . . .}

fx (x) =

p · (1− p)(x−1)

We can generalize this to r successes, which leads

gives us the Negative Bionomial Distribution.
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Poisson Distribution

We also often interested in the number of occurances

of an event in a given interval of time or space. This

count is a Poisson r.v., generated by a process with

the following properties,

1. Only one event can occur at a time or location;

simultaneous event are not allowed.

2. Occurrence of an event in a given period is

independent occurrences in other

non-overlapping periods.

3. The average number of occurrences λ in a unit

period does not change with time or space.

Sample space of x: Sx =

{0, 1, 2, 3, . . .}

fx (x; t) = e−λt
(λt)−x

x!

where, t is the fixed duration of interest, and λ

is the average number of occurrences in a unit

time window.
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Continuous Random Variables

I We often encounter uncountable sample spaces, and we can associate these samples

spaces with random variables that assume values in a continuous interval. E.g. Time

taken to complete a task, blood glucose concentration, wait time for a doctor’s

appointment etc.

I Although in practice we only work with number of finite precision, working with a

continuous random variable often simplifies analysis through the use of calculus.

I Consider a uncountably infinite sample space S, and a associated r.v. that maps to the

entire real line R, i.e. x (•) : S 7→ R.

I In this case, probabilities of events of S cannot be determined from probabilities to the

elementary events.
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Continuous Random Variables

I A simple way to assign probability to events in S is to start with events of the form x ≤ x.

Probabilities of all other events of interest can be obtained from these probabilities P (x ≤ x).

I We obtain the probability distribution function of a r.v. x by assinging probabilities to these

events,
Fx (x) , P (x ≤ x) , x ∈ (−∞,∞)

I The continuous analogue of the PMF in the discrete r.v. case is the probability density function

(PDF) of the r.v. x,

fx (x) ,
d

dx
Fx (x) =⇒ Fx (x) =

∫ x

−∞
fx (l) dl

I For small values of δx, fx (x0) δx is the probability x assuming values between x0 and x0 + δx.

P (x0 ≤ x ≤ x0 + δx) = fx (x0) δx
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Properties of the prob. distribution function

I Prob. distribution functions of discrete

r.v.s have step discontinuities, while

that of continuous r.v.s are continuous.

I Discrete r.v.s can be represented using

a prob. density function with impulse

functions. This would be consistent

with the step discontinuities in the

prob. distribution function.

Properties of the prob. distribution

function

I Fx (−∞) = 0 and Fx (∞) = 1.

I If x1 < x2, then Fx (x1) ≤ Fx (x2).

I P (x > x) = 1− Fx (x)

I P (x1 < x ≤ x2) = Fx (x2)− Fx (x1)

I P (x = x) = Fx (x)− Fx (x−)

I P (x1 ≤ x ≤ x2) = Fx (x2)− Fx

(
x−1
)
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Uniform Distribution

I This is encoutnered when sampling from a continuous region with all points in the

region being equally likely.

fx (x; a, b) =

 1
b−a a ≤ x ≤ b

0 Otherwise
, Fx (x; a, b) =


0 x < a

x−a
b−a a ≤ x ≤ b

1 x > b
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Gaussian Distribution

I Most common distribution encountered in probability and statitics.

I Central limit theorem states that the sum a large number of independent random

variables tends to a Gaussian.

fx
(
x;µ, σ2

)
=

1√
2πσ2

e−
(x−µ)2

2σ2 = N
(
µ, σ2

)
, Fx (x; a, b) =

1√
2πσ2

∫ x
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(u−µ)2
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Exponential Distribution

I This is encountered when dealing with problems of waiting times between events, where

the occurance of an event in two non-overlapping time windows is independent.

fx (x;λ) =

0 x < 0

λe−λx x ≥ 0
, Fx (x;λ) =

0 x < 0

1− e−λx x ≥ 0
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Conditional Probability Distributions and Densities

We can extend the idea of conditional probability can be extended to probability

distributions. Consider a random variable x, and some event A that has occured. We can

determine the conditional probability distribution as the following,

Fx (x|A) , P (x ≤ x|A) =
P (x ≤ x,A)

P (A)
, P (A) = 0

where, P (x ≤ x,A) is the probability of the intersection of the events x ≤ x and A.

We can similarly define the conditional probability density function,

fx (x|A) ,
dFx (x)

dx
= P (x ≤ x|A) =

P (x ≤ x,A)

P (A)
, P (A) = 0
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Conditional Probability Distributions and Densities
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Total Probability Theorem

I Total Probability theorem:

P (B) =

n∑
i=1

P (B|Ai)P (Ai)

I If B is the event x ≤ x, then we have,

Fx (x) =
n∑
i=1

Fx (x|Ai)P (Ai) and fx (x) =
n∑
i=1

fx (x|Ai)P (Ai)

A random binary signal x ∈ {0, 1} is transmitted through a additive Gaussian noisy channel whose noise

properties depend on the voltage being transmitted (P (x = 1) = p). The received signal amplitude at each

ppint in time is a random varible r,

N
(
0, σ2

1

)
, x = 0V

N
(
1, σ2

2

)
, x = 1V

. Find the expression for fr (r).
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Baye’s Theorem

I Baye’s theorem:

P (A|B) = P (B|A)
P (A)

P (B)

I If B is the event x1 < x ≤ x2, then we have,

P (A |x1 < x ≤ x2) =
Fx (x2 |A)− Fx (x1 |A)

Fx (x2)− Fx (x1)
P (A)

I Can we find out P (A |x = x)?

P (A |x = x) = lim
∆x→0

P (A |x < x ≤ x+ ∆x) =
fx (x |A)

fx (x)
P (A)
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Baye’s Theorem

P (x = 1 | r = 0.2) =?

P (x = 1 | r = 0.4) =?

P (x = 1 | r = 0.6) =?
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