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Matrices are basis dependent

» Linear transformations represented as matrices depend on the choice of basis.
For example, if A : R® — R"represents a linear transformation in the standard
basis, then the same transformation in a basis V' is given by,

VLAV : Similarity transformation

» In fact, for specific a choice of basis, it is possible to have the simplest possible
representation for A — Ejgen decomposition.
When a matrix A has n eigenpairs {(\;,x;)}—;, with linearly independent

eigenvectors, we have
A =XAX!

» What about rectangular matrices A € R™*"? Can we talk about “similar”
matrices in this case?
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Matrix equivalence

» Consider a linear transformation 7" : R™ — R™, such that y = 7" (x), where
x € R" and y € R™. T can be represented as a matrix A, such that y = Ax.

» Exact entries of A will depend on the choice of basis for both the input and the
output spaces. Let us assume that the matrix A is the representation when the
standard basis is used for the input and output spaces.

> If a different set of basis are chosen for the input and output spaces, namely
V=A{vi}i_, (vi € R") and W = {w;}."; (w; € R™). Then the corresponding
matrix representation for the linear transformation T is,

Ayw = WAV

where,theV:[vl Vo ... Vn] andW:[wl Wy ... wm].

» A and Ay are called equivalent matrices.
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Singular Value Decomposition: Diagonalizing any matrix
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Eigen-decomposition provided a way to do this for a square matrix with full rank.
A = XAX"'. When A is symmetric, A = QAQT.

For rectangular and rank-deficient matrices, we can do this using singular value
decomposition.

Consider a matrix A € R™*™ with rank (A) =r.

D O T
A=USVi=[u w ... uy] [0 0} [vi o va ... vy
where, U € R™™ UUT =TI, V € R*™", VVT =T, and D = diag (07 ... 0,).
Columns U are eigenvectors of AT A, forming an orthonormal basis for R™.

Columns V are eigenvectors of AA”T, forming an orthonormal basis for R™.
af = )i, where \;s are the eigenvalues of AT A and AAT.
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Singular Value Decomposition: Diagonalizing any matrix

> For A, X R . ) )
C(A)=span{t...0,} N (A ) = span{Qy41... U}
C(A") =span{vi...%;} N (A)=span{¥ry1... %}

where, the ;s and the v;s are any orthonormal basis for R™ and R"”, respectively.

Ue = [ﬁl cee ﬁ'f] ) ﬂlns = [ﬁr-i-l cee ﬁm] , Vg = [‘Afl .. ‘Af'r] y Vs = [‘}'r'—&-l .. ~‘A’n]
> Now, A can be written as,
» o R 0] [VL
A= (0w 0[5 of[3]
where, R € R"™*".
It can be shown that two orthogonal matrices P and Q can be chosen, such that

3 2 D 0] r[V] T
A = [U, Ulns]P[ 0 O]Q [Vi]:UEV
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Singular Value Decomposition: Diagonalizing any matrix

A—USV = [w w ... uy] B g] Vi Ve ...va]
» Orthonormal basis for C (A) — {uj...u,}.
» Orthonormal basis for N (AT) = {wy1 .. unt
> Orthonormal basis for C (AT) — {vi...v,}.
» Orthonormal basis for N (A) — {v,41...vp}.
o ... 0
>»D=|: .. |,012002>...20,>0.
0 ... o
g1 ... 0 V{
> Reduced SVD: A = [u;...u,] : :
0 or| |vE

T

6/9



Sivakumar Balasubramanian

Geometry of SVD

y = Ax, where A = uxvT,
A € R"™ ™ and rank (A) = n.
1= |x|* = |A-ty|?
—yTA-TA 1y

—yT (v=-1uT)" ve-1uTy
=yTuz-vTvz-1uTy
=wl'E2w

where, w = UTy;
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Singular Value Decomposition: Diagonalizing any matrix

00

SVD allows us to obtain low rank approximation of the given matrix A, which has lots
of applications in signal processing and data analysis.

A:UZVT:[ul uz ... um] |:D 0:| [Vl V9 ...Vn]T

A =oyuvl +oowvl + ..+ oouvE, rank (A) =1

where, u;v! are rank one matrices.

We can obtain a matrix of rank k < r by setting o; = 0,Vk < i < r.
A, = olulv? 4+ ...+ Jkukvz

SVD gives the best possible low rank approximations in terms of the distance between
A and Ay,

omin A =Bl = A~ Al = ok

r 1/2
min  [|[A-B|.=||A - Al = o?
ol | lr = 73 (;l )
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Singular Value Decomposition: Diagonalizing any matrix

> Geometrically, low rank approximations correspond to a r-dimensional
hyper-ellipsoid transformed to a lower dimensional hyper-ellipsoid by flattening the
r-dimensional hyper-ellipsoid along its smallest principal axis.
» Principal component analysis:
» Multi-dimensional data often have structure in the form of correlations between the
individual variables. Such data can be approximated by a lower dimensional
representation.
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