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Matrices are basis dependent

I Linear transformations represented as matrices depend on the choice of basis.
For example, if A : Rn → Rnrepresents a linear transformation in the standard
basis, then the same transformation in a basis V is given by,

V−1AV : Similarity transformation

I In fact, for specific a choice of basis, it is possible to have the simplest possible
representation for A −→ Eigen decomposition.
When a matrix A has n eigenpairs {(λi,xi)}ni=1, with linearly independent
eigenvectors, we have

A = XΛX−1

I What about rectangular matrices A ∈ Rm×n? Can we talk about “similar”
matrices in this case?
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Matrix equivalence

I Consider a linear transformation T : Rn → Rm, such that y = T (x), where
x ∈ Rn and y ∈ Rm. T can be represented as a matrix A, such that y = Ax.

I Exact entries of A will depend on the choice of basis for both the input and the
output spaces. Let us assume that the matrix A is the representation when the
standard basis is used for the input and output spaces.

I If a different set of basis are chosen for the input and output spaces, namely
V = {vi}ni=1 (vi ∈ Rn) and W = {wi}mi=1 (wi ∈ Rm). Then the corresponding
matrix representation for the linear transformation T is,

AVW = W−1AV

where, the V =
[
v1 v2 . . . vn

]
and W =

[
w1 w2 . . . wm

]
.

I A and AVW are called equivalent matrices.
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Singular Value Decomposition: Diagonalizing any matrix

I Eigen-decomposition provided a way to do this for a square matrix with full rank.
A = XΛX−1. When A is symmetric, A = QΛQT .

I For rectangular and rank-deficient matrices, we can do this using singular value
decomposition.

I Consider a matrix A ∈ Rm×n with rank (A) = r.

A = UΣVT =
[
u1 u2 . . . um

] [D 0
0 0

] [
v1 v2 . . . vn

]T
where, U ∈ Rm×m, UUT = I; V ∈ Rn×n, VVT = I; and D = diag (σ1 . . . σr).

I Columns U are eigenvectors of ATA, forming an orthonormal basis for Rm.

I Columns V are eigenvectors of AAT , forming an orthonormal basis for Rn.

I σ2i = λi, where λis are the eigenvalues of ATA and AAT .
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Singular Value Decomposition: Diagonalizing any matrix

I For A,
C (A) = span {û1 . . . ûr} N

(
AT
)
= span {ûr+1 . . . ûm}

C
(
AT
)
= span {v̂1 . . . v̂r} N (A) = span {v̂r+1 . . . v̂n}

where, the ûis and the v̂is are any orthonormal basis for Rm and Rn, respectively.

Ûcs =
[
û1 . . . ûr

]
, Ûlns =

[
ûr+1 . . . ûm

]
, V̂rs =

[
v̂1 . . . v̂r

]
, V̂ns =

[
v̂r+1 . . . v̂n

]
I Now, A can be written as,

A =
[
Ûcs Ûlns

] [R 0
0 0

] [
V̂T
rs

V̂T
ns

]
where, R ∈ Rr×r.
It can be shown that two orthogonal matrices P and Q can be chosen, such that

A =
[
Ûcs Ûlns

]
P

[
D 0
0 0

]
QT

[
V̂T
rs

V̂T
ns

]
= UΣVT
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Singular Value Decomposition: Diagonalizing any matrix

A = UΣVT =
[
u1 u2 . . . um

] [D 0
0 0

] [
v1 v2 . . .vn

]T
I Orthonormal basis for C (A)→ {u1 . . .ur}.
I Orthonormal basis for N

(
AT
)
→ {ur+1 . . .um}.

I Orthonormal basis for C
(
AT
)
→ {v1 . . .vr}.

I Orthonormal basis for N (A)→ {vr+1 . . .vn}.

I D =

σ1 . . . 0
...

. . .
...

0 . . . σr

, σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

I Reduced SVD: A =
[
u1 . . .ur

] σ1 . . . 0
...

. . .
...

0 . . . σr


vT1

...
vTr


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Geometry of SVD

y = Ax, where A = UΣVT ,
A ∈ Rn×n and rank (A) = n.

1 = ‖x‖2 =
∥∥A−1y

∥∥2
= yT A−T A−1y

= yT
(
VΣ−1UT

)T
VΣ−1UT y

= yT UΣ−1VT VΣ−1UT y

= wT Σ−2w

where, w = UT y;

x21+. . .+x
2
n =

w2
1

σ2
1

+
w2

2

σ2
2

+. . .+
w2

n

σ2
n

= 1
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x2

v1v2
x

x1

x2

VTv1

VTv2 VTx

x1

x2
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Singular Value Decomposition: Diagonalizing any matrix

A = UΣVT =
[
u1 u2 . . . um

] [D 0
0 0

] [
v1 v2 . . .vn

]T
SVD allows us to obtain low rank approximation of the given matrix A, which has lots
of applications in signal processing and data analysis.

A = σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σrurv

T
r , rank (A) = r

where, uiv
T
i are rank one matrices.

We can obtain a matrix of rank k < r by setting σi = 0,∀k < i ≤ r.

Ak = σ1u1v
T
1 + . . .+ σkukv

T
k

SVD gives the best possible low rank approximations in terms of the distance between
A and Ak.

min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1

min
rank(B)=k

‖A−B‖F = ‖A−Ak‖F =

(
r∑

i=k+1

σ2i

)1/2
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Singular Value Decomposition: Diagonalizing any matrix
I Geometrically, low rank approximations correspond to a r-dimensional

hyper-ellipsoid transformed to a lower dimensional hyper-ellipsoid by flattening the
r-dimensional hyper-ellipsoid along its smallest principal axis.

I Principal component analysis:
I Multi-dimensional data often have structure in the form of correlations between the

individual variables. Such data can be approximated by a lower dimensional
representation.

Figure: Awesome figure


