1/9

◆□ > ◆□ > ◆目 > ◆目 > ● 目 のへで

Linear Systems Singular Value Decomposition

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

2/9

< ロ > < 同 > < 三 > < 三 > < 三 > の < ○

Matrices are basis dependent

Linear transformations represented as matrices depend on the choice of basis. For example, if A : ℝⁿ → ℝⁿ represents a linear transformation in the standard basis, then the same transformation in a basis V is given by,

 $\mathbf{V}^{-1}\mathbf{A}\mathbf{V}$: Similarity transformation

In fact, for specific a choice of basis, it is possible to have the simplest possible representation for A → Eigen decomposition. When a matrix A has n eigenpairs {(λ_i, x_i)}ⁿ_{i=1}, with linearly independent eigenvectors, we have

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$$

▶ What about rectangular matrices $A \in \mathbb{R}^{m \times n}$? Can we talk about "similar" matrices in this case?

3/9

Matrix equivalence

- Consider a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$, such that $\mathbf{y} = T(\mathbf{x})$, where $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$. T can be represented as a matrix \mathbf{A} , such that $\mathbf{y} = \mathbf{A}\mathbf{x}$.
- Exact entries of A will depend on the choice of basis for both the input and the output spaces. Let us assume that the matrix A is the representation when the standard basis is used for the input and output spaces.
- ▶ If a different set of basis are chosen for the input and output spaces, namely $V = \{\mathbf{v}_i\}_{i=1}^n \ (\mathbf{v}_i \in \mathbb{R}^n)$ and $W = \{\mathbf{w}_i\}_{i=1}^m \ (\mathbf{w}_i \in \mathbb{R}^m)$. Then the corresponding matrix representation for the linear transformation T is,

$$\mathbf{A}_{VW} = \mathbf{W}^{-1} \mathbf{A} \mathbf{V}$$

where, the $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}$ and $\mathbf{W} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \dots & \mathbf{w}_m \end{bmatrix}$. A and \mathbf{A}_{VW} are called *equivalent matrices*.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- Eigen-decomposition provided a way to do this for a square matrix with full rank. $\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$. When \mathbf{A} is symmetric, $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T}$.
- For rectangular and rank-deficient matrices, we can do this using singular value decomposition.
- Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $rank(\mathbf{A}) = r$.

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_m \end{bmatrix} \begin{bmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}^T$$

where, $\mathbf{U} \in \mathbb{R}^{m \times m}$, $\mathbf{U}\mathbf{U}^T = \mathbf{I}$; $\mathbf{V} \in \mathbb{R}^{n \times n}$, $\mathbf{V}\mathbf{V}^T = \mathbf{I}$; and $\mathbf{D} = \text{diag}(\sigma_1 \dots \sigma_r)$.

- Columns U are eigenvectors of $\mathbf{A}^T \mathbf{A}$, forming an orthonormal basis for \mathbb{R}^m .
- Columns V are eigenvectors of AA^T, forming an orthonormal basis for ℝⁿ.
 σ_i² = λ_i, where λ_is are the eigenvalues of A^TA and AA^T.

For
$$\mathbf{A}$$
,
 $C(\mathbf{A}) = span \{ \hat{\mathbf{u}}_1 \dots \hat{\mathbf{u}}_r \} \quad N(\mathbf{A}^T) = span \{ \hat{\mathbf{u}}_{r+1} \dots \hat{\mathbf{u}}_m \}$
 $C(\mathbf{A}^T) = span \{ \hat{\mathbf{v}}_1 \dots \hat{\mathbf{v}}_r \} \quad N(\mathbf{A}) = span \{ \hat{\mathbf{v}}_{r+1} \dots \hat{\mathbf{v}}_n \}$

where, the $\hat{\mathbf{u}}_i$ s and the $\hat{\mathbf{v}}_i$ s are any orthonormal basis for \mathbb{R}^m and \mathbb{R}^n , respectively. $\hat{\mathbf{U}}_{cs} = \begin{bmatrix} \hat{\mathbf{u}}_1 \dots \hat{\mathbf{u}}_r \end{bmatrix}$, $\hat{\mathbf{U}}_{lns} = \begin{bmatrix} \hat{\mathbf{u}}_{r+1} \dots \hat{\mathbf{u}}_m \end{bmatrix}$, $\hat{\mathbf{V}}_{rs} = \begin{bmatrix} \hat{\mathbf{v}}_1 \dots \hat{\mathbf{v}}_r \end{bmatrix}$, $\hat{\mathbf{V}}_{ns} = \begin{bmatrix} \hat{\mathbf{v}}_{r+1} \dots \hat{\mathbf{v}}_n \end{bmatrix}$

Now, A can be written as,

$$\mathbf{A} = \begin{bmatrix} \hat{\mathbf{U}}_{cs} & \hat{\mathbf{U}}_{lns} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{V}}_{rs}^T \\ \hat{\mathbf{V}}_{rs}^T \end{bmatrix}$$

where, $\mathbf{R} \in \mathbb{R}^{r \times r}$.

It can be shown that two orthogonal matrices ${\bf P}$ and ${\bf Q}$ can be chosen, such that

$$\mathbf{A} = \begin{bmatrix} \hat{\mathbf{U}}_{cs} & \hat{\mathbf{U}}_{lns} \end{bmatrix} \mathbf{P} \begin{bmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{Q}^T \begin{bmatrix} \hat{\mathbf{V}}_{rs}^T \\ \hat{\mathbf{V}}_{ns}^T \end{bmatrix} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_m \end{bmatrix} \begin{bmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}^T$$

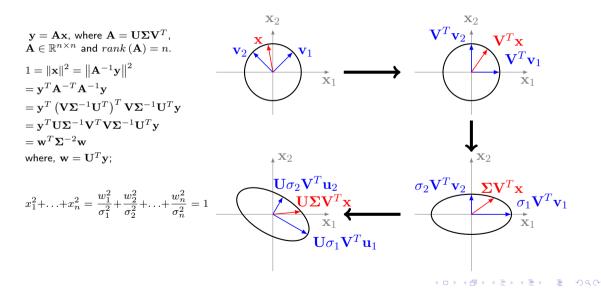
• Orthonormal basis for
$$N(\mathbf{A}) \rightarrow {\mathbf{v}_{r+1} \dots \mathbf{v}_n}$$
.

$$\mathbf{D} = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_r \end{bmatrix}, \ \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r > 0.$$

$$\blacktriangleright \text{ Reduced SVD: } \mathbf{A} = \begin{bmatrix} \mathbf{u}_1 \dots \mathbf{u}_r \end{bmatrix} \begin{bmatrix} \sigma_1 & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \sigma_r \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T\\ \vdots\\ \mathbf{v}_r^T \end{bmatrix}$$

う 2 (1) (

Geometry of SVD



$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_m \end{bmatrix} \begin{bmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}^T$$

SVD allows us to obtain low rank approximation of the given matrix A, which has lots of applications in signal processing and data analysis.

$$\mathbf{A} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \ldots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T, \ rank \left(\mathbf{A}\right) = r$$

where, $\mathbf{u}_i \mathbf{v}_i^T$ are rank one matrices.

We can obtain a matrix of rank k < r by setting $\sigma_i = 0, \forall k < i \leq r$.

$$\mathbf{A}_k = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \ldots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T$$

SVD gives the best possible low rank approximations in terms of the distance between A and A_k .

$$\min_{rank(\mathbf{B})=k} \|\mathbf{A} - \mathbf{B}\|_2 = \|\mathbf{A} - \mathbf{A}_k\|_2 = \sigma_{k+1}$$
$$\min_{rank(\mathbf{B})=k} \|\mathbf{A} - \mathbf{B}\|_F = \|\mathbf{A} - \mathbf{A}_k\|_F = \left(\sum_{i=k+1}^r \sigma_i^2\right)^{1/2}$$

- Geometrically, low rank approximations correspond to a *r*-dimensional hyper-ellipsoid transformed to a lower dimensional hyper-ellipsoid by flattening the *r*-dimensional hyper-ellipsoid along its smallest principal axis.
- Principal component analysis:
 - Multi-dimensional data often have structure in the form of correlations between the individual variables. Such data can be approximated by a lower dimensional representation.

