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Vectors

I Vectors are ordered list of numbers (scalars). v =


1.2
−0.1

...
−1.24

.

Note: Small bold letter will represent vectors. e.g. a,x, . . .

I Scalars can be any field R,C,Z,Q. Scalars will be represented using lower case normal
font, e.g. x, y, α, β, . . .

I Addition and multiplication operations performed on vectors will follow the rules of
addition/multiplication of the corresponding scalar fields.

I We will typically only encounter only R and C in this course.
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Vectors

I Individual elements of a vector v are indexed. The ith element of v is referred to as vi.

I Dimension or size of a vector is number of elements in the vector.

I Set of n-real vectors is denoted by Rn (similarly, Cn)
I Vectors a and b are equal, if

I both have the same size; and
I ai = bi, i ∈ {1, 2, 3, . . . n}
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Vectors

I Unit vector e1 =


1
0
0
...
0

 Zero vector 0 =


0
0
0
...
0

 One vector 1 =


1
1
1
...
1


I Geometrically, real n-vectors can be thought of as points in Rn space.

0

v
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Vectors

I Vector scaling: Multiplication of a scalar
and a vector.

w = av = a


v1
v2
v3
...
vn

 =


av1
av2
av3

...
avn

 a ∈ R; w,v ∈ Rn

0

v
0.7v

0

v

−1.1v

Properties

I Scalar multiplication is commutative.

αv = vα

I Scalar multiplication is associative.

(αβ)v = α (βv)

I Scalar multiplication is distributive.

(α+ β)v = αv + βv
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Vectors

I Vector addition: Adding two vectors of
the same dimension, element by element.

u+v =


u1
u2
u3
...
un

+

v1
v2
v3
...
vn

 =


u1 + v1
u2 + v2
u3 + v3

...
un + vn

 u,v ∈ Rn

0

u

v

u+ v

Properties

I Vector addition is commutative.

a+ b = b+ a

I Vector addition is associative.

(a+ b) + c = a+ (b+ c)

I Zero vector has no effect.

a+ 0 = a

I Subtraction of vectors.

a+ (−1)a = a− a = 0
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Vector spaces

I A set of vectors V that is closed under vector addition and vector scaling.

∀x,y ∈ V, x+ y ∈ V

∀x ∈ V, and α ∈ F, αx ∈ V
I For a set to be a vector space, it must satisfy the followng properties: x,y, z ∈ V

I Commutativity : x+ y = y + x
I Associativity of vector addition: (x+ y) + z = x+ (y + z)
I Additive identity : x+ 0 = 0+ x = x (0 ∈ V )
I Additive inverse: ∃ − x ∈ V,x+ (−x) = 0
I Associativity of scalar multiplication: α (βx) = (αβx)
I Distributivity of scalar sums: (α+ β)x = αx+ βx
I Distributivity of vector sums: α (x+ y) = αx+ αy
I Scalar multiplication identity : 1x = x

I We will mostly deal with Rn and Cn vectors spaces in this course.
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Subspaces

I A subspace S of a vector space V is a subset of V and is itself a vector space.

S ⊂ V, ∀x,y ∈ S, αx+ βy ∈ S, α, β ∈ F

I The zero vector is called the trivial subspace of a vector space V .
I For example in, in R3 all planes and lines passing through the origin are subspaces of R3.

x

y

z
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Linear independence

I A collection of vectors {x1,x2,x3, . . .xn} , xi ∈ Rm i ∈ {1, 2, 3, . . . n} is called linearly
dependent if,

n∑
i=1

αixi = 0, hold for some α1, α2, . . . αn ∈ R, such that ∃αi 6= 0

I Another way to state this: A collection of vectors is linearly dependent if at least one of
the vectors in the collection can be expressed as a linear combination of the other
vectors in the collection, i.e.

xi = −
n∑

j=1,j 6=i

(
αj

αi

)
xj

I A collection of vectors is linearly independent if it is not linearly dependent.
n∑

i=1

αixi = 0 =⇒ α1 = α2 = α3 . . . = αn = 0



Sivakumar Balasubramanian Linear Algebra and Random Processes/Vectors 11/20

Span of a set of vectors

I Consider a set of vectors S = {v1,v2,v3 . . .vr} where vi ∈ Rn, 1 ≤ i ≤ r.

I The span of the set S is defined as the set of all linear combination of the vectors vi,

span (S) = {α1v1 + α2v2 + . . .+ αrvr} , αi ∈ R

I Is span (S) a subspace of Rn?

I We say that the subspace span (S) is spanned by the spanning set S. −→ S spans
span (S).

I Sum of subspaces X,Y is defined as the sum of all possible vectors from X and Y .

X + Y = {x+ y | x ∈ X,y ∈ Y }

I Sum of two subspace is also a subspace.



Sivakumar Balasubramanian Linear Algebra and Random Processes/Vectors 12/20

Inner Product

I Standard inner product is defined as the following,

xTy =

n∑
i=1

xiyi, x,y ∈ Rn

For complex vectors: x∗y =
∑n

i=1 xiyi, x,y ∈ Cn

I Properties
I xTx > 0, ∀x 6= 0 and xTx = 0⇔ x = 0
I Commutative: xTy = yTx
I Associativity with scalar multiplication: (αx)

T
y = α

(
xTy

)
I Distributivity with vector addition: (x+ y)

T
z = xT z+ yT z
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Norm
I Norm is a measure of the size of a vector.

I Euclidean norm of a n-vector x ∈ Rn is defined as,
‖x‖2 =

√
xTx =

√∑n
i=1 x

2
i .

I ‖x‖2 is a measure of the length of the vector x.

I Any function of the form ‖•‖ : Rn −→ R≥0 is a valid norm,
provided it satisfies the following properties.

I Properties

I Definiteness. ‖x‖ = 0 ⇐⇒ x = 0
I Non-negativity. ‖x‖ ≥ 0
I Non-negative homogeneity. ‖βx‖ = |β| ‖x‖ , β ∈ R
I Triangle inequality. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

I p-norm: ‖x‖p = (
∑n

i=1 |xi|
p
)

1
p

I Norm of difference between two vectors is a measure of the
distance between the vectors. d = ‖x− y‖2.

‖x‖1 =
∑n

i=1 |xi|

‖x‖2 =
(∑n

i=1 x
2
i

) 1
2

‖x‖∞ = max1≤i≤n |xi|

‖x‖p = (
∑n

i=1 x
p
i )

1
p
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Orthogonality

I Orthogonality is the idea of two vectors being perpendicular, x ⊥ y.

0

x =

[
2
2

]
y =

[
−1
1

]x− y =

[
3
1

]

Using the Pythagonean theorem, ‖x− y‖2 = ‖x‖2 + ‖y‖2

‖x‖2 + ‖y‖2 − 2xTy = ‖x‖2 + ‖y‖2 =⇒ xTy = 0

I We extend this to the n-dimensional case and define two vectors x,y ∈ Rn being
orthogonal, if

xTy =

n∑
i=1

xiyi = 0
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Angle between vectors

0

x =

[
x1
x2

]
y =

[
y1
y2

]
x− y =

[
x1 − y1
y1 − y2

]

I Inner products are used for projecting a vector onto another vector or a subspace.

I It is also a measure of similarity between two vectors, cos (θ) = xTy
‖x‖‖y‖

I Cauchy-Bunyakovski-Schwartz Inequality:∣∣xTy
∣∣ ≤ ‖x‖ ‖y‖ , x,y ∈ Rn
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Basis

Consider a vector y =
∑n

i=1 αixi. What can we say about the coefficients αis when the collection
{xi}ni=1 is,

I linearly independent =⇒ αis are unique.

I linearly dependent =⇒ αis are not unique.

Consider R2 vector space. x1 =

[
1
0

]
, x2 =

[
1
1

]
x3 =

[
−1
1

]
.

x1

x2

x3 = −2x1 + x2

−2x1

Independence-Dimension inequality: What is the maximum possible size of a linearly independent
collection?

A linear independent collection of n-vectors can at most have n vectors.
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Basis

I A linearly independent set of n n-vector is called a basis. In particular, it is a basis of Rn.

I Any n-vector can be represented as a unique linear combination of the elements of the
basis.

I Consider the basis {xi}ni=1. A n-vector y can be represented as a linear combination of
xis, y =

∑n
i=1 αixi. This is called the expansion of y in the {xi}ni=1 basis.

I The numbers αi are called the coefficients of the expansion of y in the {xi}ni=1 basis.

I Orthogonal vectors: A set of vectors {xi}ni=1 is (mutually) orthogonal is xi ⊥ xj for
all i, j ∈ {1, 2, 3, . . . n} and i 6= j.

I This set is called orthonormal if its elements are all of unit length ‖xi‖2 = 1 for all
i ∈ {1, 2, 3, . . . n}.

xT
i xj =

{
0 i 6= j

1 i = j
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Representing a Vector in an Orthonormal Basis

I An orthonormal collection of vectors is linearly independent.
I Consider an orthonormal basis {xi}ni=1. The expansion of a vector y is given by,

y = α1x1 + α2x2 + α3x3 + . . .+ αnxn

xT
i y = α1x

T
i x1 + α2x

T
i x2 + α3x

T
i x3 + . . .+ αnx

T
i xn = αi

I Thus, we can rewrite this as,

y =
(
yTx1

)
x1 +

(
yTx2

)
x2 +

(
yTx3

)
x3 + . . .+

(
yTx1

)
xn

x1

x2

y
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Dimension of a Vector Space

I There an infinite number of bases for a vector space.

I There is one thing that is common among all these bases – the number of bases vectors.

I This number is a property of the vector space, and represents the “degrees of freedom”
of the space. This is called the dimension of the vector space.

I A subspace of dimension m can have at most m independent vectors.

I Notice that the word “dimension” of a vector space is different from the “dimension” of
a vector.

I E.g. Vectors from R3 are three dimensional vectors. But the yz-plane in R3 is a 2
dimensional subspace of R3.
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Linear Functions

I Let f be a function which maps real n-vectors to scalar real numbers. It can be
represented as the following,

f : Rn −→ R; y = f(x) = f (x1, x2, x3, . . . xn)

I Criteria for f to be a linear function: Superposition: f (αx+ βy) = αf (x) + βf (y),
where α, β ∈ R and x,y ∈ Rn.

I Inner product is a linear function in one of the arguments.

f (x) = wTx = w1x1 + w2x2 + w3x3 + . . .+ wnxn

I Any linear function can be represented in the form f (x) = wTx with an appropriately
chosen w.


